Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41524-025-01579-5
High-entropy alloys (HEAs) have emerged as promising candidates for catalyst applications due to their inherent compositional, structural, and site-level diversities, which enable highly tunable catalytic properties. However, these complexities pose grand challenges for traditional “trial-and-error” experimentation or computationally expensive “brute-force” ab initio calculations. Machine learning (ML) demonstrates great potential to address these challenges by establishing efficient, scalable mappings from composition, structure or site environment to HEA properties. Among these properties, adsorption energy, which quantifies the binding strength between catalytic intermediates and surface sites, is a crucial indicator of catalytic activity. This review provides a comprehensive overview of ML-driven strategies for adsorption energy prediction in the context of HEAs. Two primary strategies are introduced: “direct” prediction from unrelaxed structure and “iterative” prediction via ML potential-guided relaxation modeling. Both strategies can leverage handcrafted features or end-to-end frameworks such as graph neural networks. We also discuss how pretrained models on large-scale databases can extend to out-of-domain HEA systems. Beyond methodology, we address key challenges and future directions, including benchmarking ML strategies, developing HEA-specific datasets, pretraining and fine-tuning, integrating chained ML models, advancing multi-objective optimization, and bridging ML predictions with experimental validation. By critically evaluating existing strategies and highlighting emerging trends, this review underscores the critical role of ML in advancing adsorption energy predictions, offering a foundation for accelerating the discovery and optimization of HEA catalysts.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41524-025-01579-5
- https://www.nature.com/articles/s41524-025-01579-5.pdf
- OA Status
- gold
- Cited By
- 22
- References
- 174
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409150968
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409150968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41524-025-01579-5Digital Object Identifier
- Title
-
Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-04Full publication date if available
- Authors
-
Qi Wang, Yonggang YaoList of authors in order
- Landing page
-
https://doi.org/10.1038/s41524-025-01579-5Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41524-025-01579-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41524-025-01579-5.pdfDirect OA link when available
- Concepts
-
Alloy, Adsorption, Focus (optics), Entropy (arrow of time), High entropy alloys, Materials science, Computer science, Artificial intelligence, Process engineering, Thermodynamics, Chemistry, Metallurgy, Engineering, Physics, Physical chemistry, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22Per-year citation counts (last 5 years)
- References (count)
-
174Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409150968 |
|---|---|
| doi | https://doi.org/10.1038/s41524-025-01579-5 |
| ids.doi | https://doi.org/10.1038/s41524-025-01579-5 |
| ids.openalex | https://openalex.org/W4409150968 |
| fwci | 34.88005723 |
| type | article |
| title | Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy prediction |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10192 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Catalytic Processes in Materials Science |
| topics[2].id | https://openalex.org/T10030 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Electrocatalysts for Energy Conversion |
| is_xpac | False |
| apc_list.value | 2890 |
| apc_list.currency | USD |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2890 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C2780026712 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6503349542617798 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q37756 |
| concepts[0].display_name | Alloy |
| concepts[1].id | https://openalex.org/C150394285 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5731227397918701 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180254 |
| concepts[1].display_name | Adsorption |
| concepts[2].id | https://openalex.org/C192209626 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48605969548225403 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[2].display_name | Focus (optics) |
| concepts[3].id | https://openalex.org/C106301342 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4605734348297119 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[3].display_name | Entropy (arrow of time) |
| concepts[4].id | https://openalex.org/C2780299837 |
| concepts[4].level | 3 |
| concepts[4].score | 0.41209086775779724 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q18405127 |
| concepts[4].display_name | High entropy alloys |
| concepts[5].id | https://openalex.org/C192562407 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40611836314201355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[5].display_name | Materials science |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39290130138397217 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3733292520046234 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C21880701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3304401636123657 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[8].display_name | Process engineering |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29866111278533936 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2677975296974182 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C191897082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.26139944791793823 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[11].display_name | Metallurgy |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.21770504117012024 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15309354662895203 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C147789679 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1360720694065094 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[14].display_name | Physical chemistry |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.058607399463653564 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/alloy |
| keywords[0].score | 0.6503349542617798 |
| keywords[0].display_name | Alloy |
| keywords[1].id | https://openalex.org/keywords/adsorption |
| keywords[1].score | 0.5731227397918701 |
| keywords[1].display_name | Adsorption |
| keywords[2].id | https://openalex.org/keywords/focus |
| keywords[2].score | 0.48605969548225403 |
| keywords[2].display_name | Focus (optics) |
| keywords[3].id | https://openalex.org/keywords/entropy |
| keywords[3].score | 0.4605734348297119 |
| keywords[3].display_name | Entropy (arrow of time) |
| keywords[4].id | https://openalex.org/keywords/high-entropy-alloys |
| keywords[4].score | 0.41209086775779724 |
| keywords[4].display_name | High entropy alloys |
| keywords[5].id | https://openalex.org/keywords/materials-science |
| keywords[5].score | 0.40611836314201355 |
| keywords[5].display_name | Materials science |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.39290130138397217 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3733292520046234 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/process-engineering |
| keywords[8].score | 0.3304401636123657 |
| keywords[8].display_name | Process engineering |
| keywords[9].id | https://openalex.org/keywords/thermodynamics |
| keywords[9].score | 0.29866111278533936 |
| keywords[9].display_name | Thermodynamics |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.2677975296974182 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/metallurgy |
| keywords[11].score | 0.26139944791793823 |
| keywords[11].display_name | Metallurgy |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.21770504117012024 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.15309354662895203 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/physical-chemistry |
| keywords[14].score | 0.1360720694065094 |
| keywords[14].display_name | Physical chemistry |
| keywords[15].id | https://openalex.org/keywords/optics |
| keywords[15].score | 0.058607399463653564 |
| keywords[15].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1038/s41524-025-01579-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210232664 |
| locations[0].source.issn | 2057-3960 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2057-3960 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | npj Computational Materials |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41524-025-01579-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | npj Computational Materials |
| locations[0].landing_page_url | https://doi.org/10.1038/s41524-025-01579-5 |
| locations[1].id | pmh:oai:doaj.org/article:90a90b328acf4f52b1403274688883c8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | npj Computational Materials, Vol 11, Iss 1, Pp 1-21 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/90a90b328acf4f52b1403274688883c8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061055878 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3418-8809 |
| authorships[0].author.display_name | Qi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qi Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084211576 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9191-2982 |
| authorships[1].author.display_name | Yonggang Yao |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yonggang Yao |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41524-025-01579-5.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Harnessing machine learning for high-entropy alloy catalysis: a focus on adsorption energy prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4307686465, https://openalex.org/W2411146788, https://openalex.org/W3139224643, https://openalex.org/W2347546526, https://openalex.org/W1996267637, https://openalex.org/W2383621719, https://openalex.org/W2752936027, https://openalex.org/W2349867250, https://openalex.org/W2384269164, https://openalex.org/W2363982564 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1038/s41524-025-01579-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210232664 |
| best_oa_location.source.issn | 2057-3960 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2057-3960 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | npj Computational Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41524-025-01579-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | npj Computational Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41524-025-01579-5 |
| primary_location.id | doi:10.1038/s41524-025-01579-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210232664 |
| primary_location.source.issn | 2057-3960 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2057-3960 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | npj Computational Materials |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41524-025-01579-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | npj Computational Materials |
| primary_location.landing_page_url | https://doi.org/10.1038/s41524-025-01579-5 |
| publication_date | 2025-04-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4211220677, https://openalex.org/W2573377826, https://openalex.org/W1980701169, https://openalex.org/W3087505564, https://openalex.org/W4225986862, https://openalex.org/W2058085399, https://openalex.org/W2951539866, https://openalex.org/W2054168515, https://openalex.org/W2408247608, https://openalex.org/W4396580576, https://openalex.org/W2201563651, https://openalex.org/W2534691303, https://openalex.org/W4391832025, https://openalex.org/W2904540990, https://openalex.org/W4281748378, https://openalex.org/W4220936191, https://openalex.org/W3112031797, https://openalex.org/W2566042262, https://openalex.org/W4388296011, https://openalex.org/W4399376281, https://openalex.org/W2022714449, https://openalex.org/W2167035995, https://openalex.org/W2332199196, https://openalex.org/W2148707525, https://openalex.org/W2318989366, https://openalex.org/W2795185600, https://openalex.org/W3160805780, https://openalex.org/W3020204536, https://openalex.org/W3193989662, https://openalex.org/W2979902975, https://openalex.org/W4380550644, https://openalex.org/W1978215016, https://openalex.org/W1970512969, https://openalex.org/W2017425597, https://openalex.org/W4249528159, https://openalex.org/W2884430236, https://openalex.org/W2797402103, https://openalex.org/W3183767639, https://openalex.org/W4286489048, https://openalex.org/W1992985800, https://openalex.org/W2117363206, https://openalex.org/W2278970271, https://openalex.org/W3093999435, https://openalex.org/W4321085451, https://openalex.org/W4296126761, https://openalex.org/W4322492989, https://openalex.org/W4312495716, https://openalex.org/W4313547145, https://openalex.org/W4395465464, https://openalex.org/W4404222027, https://openalex.org/W3197756890, https://openalex.org/W4300773798, https://openalex.org/W2909236073, https://openalex.org/W3070174055, https://openalex.org/W3173957256, https://openalex.org/W4200590576, https://openalex.org/W4387789276, https://openalex.org/W4403202259, https://openalex.org/W4403213710, https://openalex.org/W4285026495, https://openalex.org/W4400585073, https://openalex.org/W4400237940, https://openalex.org/W4379794445, https://openalex.org/W4396862956, https://openalex.org/W4321350774, https://openalex.org/W4403902088, https://openalex.org/W4394977038, https://openalex.org/W4399170395, https://openalex.org/W4313527950, https://openalex.org/W4389685774, https://openalex.org/W3158986751, https://openalex.org/W3196321700, https://openalex.org/W4327908727, https://openalex.org/W4400823406, https://openalex.org/W4400218346, https://openalex.org/W4379744775, https://openalex.org/W3175768037, https://openalex.org/W4401305643, https://openalex.org/W3048912808, https://openalex.org/W2896511002, https://openalex.org/W2898900627, https://openalex.org/W2078492700, https://openalex.org/W2807029607, https://openalex.org/W2951644190, https://openalex.org/W2588684632, https://openalex.org/W3175054450, https://openalex.org/W4320718904, https://openalex.org/W2994866008, https://openalex.org/W3158117858, https://openalex.org/W4390350187, https://openalex.org/W3113496643, https://openalex.org/W2755116647, https://openalex.org/W4392242825, https://openalex.org/W4400744982, https://openalex.org/W2921873493, https://openalex.org/W2464725281, https://openalex.org/W1975997599, https://openalex.org/W3041359432, https://openalex.org/W2883578585, https://openalex.org/W3023937119, https://openalex.org/W2993513720, https://openalex.org/W3014178136, https://openalex.org/W3110951414, https://openalex.org/W26088913, https://openalex.org/W1678356000, https://openalex.org/W2291961022, https://openalex.org/W2100495367, https://openalex.org/W4319762935, https://openalex.org/W2194775991, https://openalex.org/W6739901393, https://openalex.org/W2016366655, https://openalex.org/W4296797703, https://openalex.org/W2091775405, https://openalex.org/W2120318938, https://openalex.org/W2583013368, https://openalex.org/W2999482379, https://openalex.org/W3087021020, https://openalex.org/W3165825885, https://openalex.org/W4291036932, https://openalex.org/W3212360274, https://openalex.org/W4283332760, https://openalex.org/W4360780573, https://openalex.org/W4309551930, https://openalex.org/W4392044082, https://openalex.org/W2197007850, https://openalex.org/W2883021798, https://openalex.org/W2778051509, https://openalex.org/W4283021369, https://openalex.org/W6609649096, https://openalex.org/W2910857709, https://openalex.org/W3152985594, https://openalex.org/W4398761506, https://openalex.org/W2766856748, https://openalex.org/W2949095042, https://openalex.org/W3212512279, https://openalex.org/W4225405705, https://openalex.org/W4392649048, https://openalex.org/W4393855306, https://openalex.org/W3120624571, https://openalex.org/W2048807806, https://openalex.org/W1984500458, https://openalex.org/W2335649524, https://openalex.org/W2032533160, https://openalex.org/W2760744264, https://openalex.org/W2547447472, https://openalex.org/W2971894235, https://openalex.org/W2530960271, https://openalex.org/W3133931590, https://openalex.org/W2988055229, https://openalex.org/W3127915450, https://openalex.org/W4382988912, https://openalex.org/W4400266871, https://openalex.org/W4401710746, https://openalex.org/W4310135808, https://openalex.org/W4386740800, https://openalex.org/W4389991806, https://openalex.org/W1982153238, https://openalex.org/W3009722102, https://openalex.org/W2571310289, https://openalex.org/W2851584547, https://openalex.org/W2059804857, https://openalex.org/W3086801199, https://openalex.org/W4309646813, https://openalex.org/W4289527972, https://openalex.org/W4385501783, https://openalex.org/W4390653010, https://openalex.org/W4403762775, https://openalex.org/W4293087097, https://openalex.org/W4317941748, https://openalex.org/W3104644561, https://openalex.org/W3113875876, https://openalex.org/W3100710928, https://openalex.org/W3101477835, https://openalex.org/W3100220443 |
| referenced_works_count | 174 |
| abstract_inverted_index.a | 85, 94, 212 |
| abstract_inverted_index.By | 189 |
| abstract_inverted_index.ML | 123, 167, 177, 184, 205 |
| abstract_inverted_index.We | 141 |
| abstract_inverted_index.ab | 41 |
| abstract_inverted_index.as | 6, 137 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 104, 206 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 88, 97, 107, 204, 220 |
| abstract_inverted_index.on | 147 |
| abstract_inverted_index.or | 37, 62, 133 |
| abstract_inverted_index.to | 13, 50, 65, 152 |
| abstract_inverted_index.we | 158 |
| abstract_inverted_index.HEA | 66, 154, 221 |
| abstract_inverted_index.Two | 109 |
| abstract_inverted_index.and | 18, 81, 119, 162, 173, 182, 194, 218 |
| abstract_inverted_index.are | 112 |
| abstract_inverted_index.can | 129, 150 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 9, 33, 100, 214 |
| abstract_inverted_index.how | 144 |
| abstract_inverted_index.key | 160 |
| abstract_inverted_index.the | 75, 105, 201, 216 |
| abstract_inverted_index.via | 122 |
| abstract_inverted_index.(ML) | 46 |
| abstract_inverted_index.Both | 127 |
| abstract_inverted_index.This | 91 |
| abstract_inverted_index.also | 142 |
| abstract_inverted_index.from | 59, 116 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.pose | 30 |
| abstract_inverted_index.role | 203 |
| abstract_inverted_index.site | 63 |
| abstract_inverted_index.such | 136 |
| abstract_inverted_index.this | 198 |
| abstract_inverted_index.with | 186 |
| abstract_inverted_index.Among | 68 |
| abstract_inverted_index.HEAs. | 108 |
| abstract_inverted_index.grand | 31 |
| abstract_inverted_index.graph | 138 |
| abstract_inverted_index.great | 48 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.these | 28, 52, 69 |
| abstract_inverted_index.which | 21, 73 |
| abstract_inverted_index.(HEAs) | 3 |
| abstract_inverted_index.Beyond | 156 |
| abstract_inverted_index.alloys | 2 |
| abstract_inverted_index.enable | 22 |
| abstract_inverted_index.energy | 102, 209 |
| abstract_inverted_index.extend | 151 |
| abstract_inverted_index.future | 163 |
| abstract_inverted_index.highly | 23 |
| abstract_inverted_index.initio | 42 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.neural | 139 |
| abstract_inverted_index.review | 92, 199 |
| abstract_inverted_index.sites, | 83 |
| abstract_inverted_index.Machine | 44 |
| abstract_inverted_index.address | 51, 159 |
| abstract_inverted_index.between | 78 |
| abstract_inverted_index.binding | 76 |
| abstract_inverted_index.chained | 176 |
| abstract_inverted_index.context | 106 |
| abstract_inverted_index.crucial | 86 |
| abstract_inverted_index.discuss | 143 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.energy, | 72 |
| abstract_inverted_index.models, | 178 |
| abstract_inverted_index.primary | 110 |
| abstract_inverted_index.surface | 82 |
| abstract_inverted_index.trends, | 197 |
| abstract_inverted_index.tunable | 24 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.bridging | 183 |
| abstract_inverted_index.catalyst | 10 |
| abstract_inverted_index.critical | 202 |
| abstract_inverted_index.emerging | 196 |
| abstract_inverted_index.existing | 192 |
| abstract_inverted_index.features | 132 |
| abstract_inverted_index.inherent | 15 |
| abstract_inverted_index.learning | 45 |
| abstract_inverted_index.leverage | 130 |
| abstract_inverted_index.mappings | 58 |
| abstract_inverted_index.offering | 211 |
| abstract_inverted_index.overview | 96 |
| abstract_inverted_index.provides | 93 |
| abstract_inverted_index.scalable | 57 |
| abstract_inverted_index.strength | 77 |
| abstract_inverted_index.systems. | 155 |
| abstract_inverted_index.ML-driven | 98 |
| abstract_inverted_index.activity. | 90 |
| abstract_inverted_index.advancing | 179, 207 |
| abstract_inverted_index.catalytic | 25, 79, 89 |
| abstract_inverted_index.databases | 149 |
| abstract_inverted_index.datasets, | 171 |
| abstract_inverted_index.discovery | 217 |
| abstract_inverted_index.expensive | 39 |
| abstract_inverted_index.including | 165 |
| abstract_inverted_index.indicator | 87 |
| abstract_inverted_index.modeling. | 126 |
| abstract_inverted_index.networks. | 140 |
| abstract_inverted_index.potential | 49 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.structure | 61, 118 |
| abstract_inverted_index.unrelaxed | 117 |
| abstract_inverted_index.adsorption | 71, 101, 208 |
| abstract_inverted_index.candidates | 8 |
| abstract_inverted_index.catalysts. | 222 |
| abstract_inverted_index.challenges | 32, 53, 161 |
| abstract_inverted_index.critically | 190 |
| abstract_inverted_index.developing | 169 |
| abstract_inverted_index.efficient, | 56 |
| abstract_inverted_index.end-to-end | 134 |
| abstract_inverted_index.evaluating | 191 |
| abstract_inverted_index.foundation | 213 |
| abstract_inverted_index.frameworks | 135 |
| abstract_inverted_index.prediction | 103, 115, 121 |
| abstract_inverted_index.pretrained | 145 |
| abstract_inverted_index.quantifies | 74 |
| abstract_inverted_index.relaxation | 125 |
| abstract_inverted_index.site-level | 19 |
| abstract_inverted_index.strategies | 99, 111, 128, 193 |
| abstract_inverted_index.directions, | 164 |
| abstract_inverted_index.environment | 64 |
| abstract_inverted_index.handcrafted | 131 |
| abstract_inverted_index.integrating | 175 |
| abstract_inverted_index.introduced: | 113 |
| abstract_inverted_index.large-scale | 148 |
| abstract_inverted_index.predictions | 185 |
| abstract_inverted_index.pretraining | 172 |
| abstract_inverted_index.properties, | 70 |
| abstract_inverted_index.properties. | 26, 67 |
| abstract_inverted_index.strategies, | 168 |
| abstract_inverted_index.structural, | 17 |
| abstract_inverted_index.traditional | 34 |
| abstract_inverted_index.underscores | 200 |
| abstract_inverted_index.validation. | 188 |
| abstract_inverted_index.HEA-specific | 170 |
| abstract_inverted_index.High-entropy | 1 |
| abstract_inverted_index.accelerating | 215 |
| abstract_inverted_index.applications | 11 |
| abstract_inverted_index.benchmarking | 166 |
| abstract_inverted_index.complexities | 29 |
| abstract_inverted_index.composition, | 60 |
| abstract_inverted_index.demonstrates | 47 |
| abstract_inverted_index.diversities, | 20 |
| abstract_inverted_index.establishing | 55 |
| abstract_inverted_index.experimental | 187 |
| abstract_inverted_index.fine-tuning, | 174 |
| abstract_inverted_index.highlighting | 195 |
| abstract_inverted_index.methodology, | 157 |
| abstract_inverted_index.optimization | 219 |
| abstract_inverted_index.predictions, | 210 |
| abstract_inverted_index.“direct” | 114 |
| abstract_inverted_index.calculations. | 43 |
| abstract_inverted_index.comprehensive | 95 |
| abstract_inverted_index.intermediates | 80 |
| abstract_inverted_index.optimization, | 181 |
| abstract_inverted_index.out-of-domain | 153 |
| abstract_inverted_index.compositional, | 16 |
| abstract_inverted_index.computationally | 38 |
| abstract_inverted_index.experimentation | 36 |
| abstract_inverted_index.multi-objective | 180 |
| abstract_inverted_index.“iterative” | 120 |
| abstract_inverted_index.potential-guided | 124 |
| abstract_inverted_index.“brute-force” | 40 |
| abstract_inverted_index.“trial-and-error” | 35 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.99589046 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |