Harnessing Vision Models for Time Series Analysis: A Survey Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.08869
Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.08869
- https://arxiv.org/pdf/2502.08869
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407571074
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407571074Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.08869Digital Object Identifier
- Title
-
Harnessing Vision Models for Time Series Analysis: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-13Full publication date if available
- Authors
-
Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng Luo, Haifeng ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.08869Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.08869Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.08869Direct OA link when available
- Concepts
-
Time series, Series (stratigraphy), Computer science, Data science, Econometrics, Machine learning, Economics, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407571074 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.08869 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.08869 |
| ids.openalex | https://openalex.org/W4407571074 |
| fwci | 0.0 |
| type | preprint |
| title | Harnessing Vision Models for Time Series Analysis: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.947700023651123 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151406439 |
| concepts[0].level | 2 |
| concepts[0].score | 0.613410472869873 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[0].display_name | Time series |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5897521376609802 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4504760205745697 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37760835886001587 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35055989027023315 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1915493905544281 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C162324750 |
| concepts[6].level | 0 |
| concepts[6].score | 0.19094255566596985 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[6].display_name | Economics |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10054323077201843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C151730666 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[8].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/time-series |
| keywords[0].score | 0.613410472869873 |
| keywords[0].display_name | Time series |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.5897521376609802 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4504760205745697 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.37760835886001587 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.35055989027023315 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.1915493905544281 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/economics |
| keywords[6].score | 0.19094255566596985 |
| keywords[6].display_name | Economics |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.10054323077201843 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.08869 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.08869 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.08869 |
| locations[1].id | doi:10.48550/arxiv.2502.08869 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.08869 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043236347 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2986-6612 |
| authorships[0].author.display_name | Jingchao Ni |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ni, Jingchao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073603754 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4930-5556 |
| authorships[1].author.display_name | Ziming Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Ziming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5106538928 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | ChengAo Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shen, ChengAo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068043486 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4405-3887 |
| authorships[3].author.display_name | Hanghang Tong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tong, Hanghang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013197657 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7027-7916 |
| authorships[4].author.display_name | Dongjin Song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Song, Dongjin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101655413 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9817-9659 |
| authorships[5].author.display_name | Wei Cheng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cheng, Wei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102761357 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4192-0826 |
| authorships[6].author.display_name | Dongsheng Luo |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Luo, Dongsheng |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100456786 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9363-738X |
| authorships[7].author.display_name | Haifeng Chen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chen, Haifeng |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.08869 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Harnessing Vision Models for Time Series Analysis: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.947700023651123 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.08869 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.08869 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.08869 |
| primary_location.id | pmh:oai:arXiv.org:2502.08869 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.08869 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.08869 |
| publication_date | 2025-02-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 127 |
| abstract_inverted_index.It | 125 |
| abstract_inverted_index.To | 103 |
| abstract_inverted_index.as | 154 |
| abstract_inverted_index.in | 24, 54, 74, 81, 107, 121, 172, 179 |
| abstract_inverted_index.of | 69, 79, 116, 132, 139 |
| abstract_inverted_index.on | 51 |
| abstract_inverted_index.to | 15, 43, 47, 90, 150, 158, 186 |
| abstract_inverted_index.we | 168 |
| abstract_inverted_index.and | 18, 64, 71, 98, 129, 156, 175, 182 |
| abstract_inverted_index.are | 40 |
| abstract_inverted_index.but | 39 |
| abstract_inverted_index.due | 46 |
| abstract_inverted_index.for | 28, 164 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.how | 149, 157 |
| abstract_inverted_index.key | 145 |
| abstract_inverted_index.the | 5, 37, 44, 48, 58, 65, 72, 77, 91, 105, 108, 114, 133, 144, 160, 170, 173 |
| abstract_inverted_index.way | 38 |
| abstract_inverted_index.LLMs | 120 |
| abstract_inverted_index.Time | 0 |
| abstract_inverted_index.also | 33 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.deep | 12 |
| abstract_inverted_index.dual | 137 |
| abstract_inverted_index.fill | 104 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.have | 32, 85 |
| abstract_inverted_index.less | 41 |
| abstract_inverted_index.made | 35 |
| abstract_inverted_index.over | 119 |
| abstract_inverted_index.pre- | 174 |
| abstract_inverted_index.some | 87 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 55, 111, 180 |
| abstract_inverted_index.time | 29, 62, 83, 122, 152, 162, 189 |
| abstract_inverted_index.with | 136, 192 |
| abstract_inverted_index.LLMs, | 70 |
| abstract_inverted_index.Large | 19, 94 |
| abstract_inverted_index.along | 36 |
| abstract_inverted_index.blank | 106 |
| abstract_inverted_index.model | 159 |
| abstract_inverted_index.space | 68 |
| abstract_inverted_index.steps | 177 |
| abstract_inverted_index.token | 67 |
| abstract_inverted_index.views | 138 |
| abstract_inverted_index.(LVMs) | 97 |
| abstract_inverted_index.Models | 21, 96, 101 |
| abstract_inverted_index.Vision | 95, 99 |
| abstract_inverted_index.answer | 143 |
| abstract_inverted_index.encode | 151 |
| abstract_inverted_index.future | 184 |
| abstract_inverted_index.imaged | 161 |
| abstract_inverted_index.images | 155 |
| abstract_inverted_index.models | 27, 118 |
| abstract_inverted_index.recent | 16 |
| abstract_inverted_index.series | 1, 30, 63, 84, 123, 153, 163, 190 |
| abstract_inverted_index.survey | 112 |
| abstract_inverted_index.tasks. | 166 |
| abstract_inverted_index.vision | 26, 117, 193 |
| abstract_inverted_index.(LLMs). | 22 |
| abstract_inverted_index.(VLMs). | 102 |
| abstract_inverted_index.Efforts | 23 |
| abstract_inverted_index.address | 169 |
| abstract_inverted_index.advance | 188 |
| abstract_inverted_index.between | 60 |
| abstract_inverted_index.domain. | 56 |
| abstract_inverted_index.equally | 92 |
| abstract_inverted_index.further | 187 |
| abstract_inverted_index.models, | 11, 14 |
| abstract_inverted_index.models. | 194 |
| abstract_inverted_index.outline | 183 |
| abstract_inverted_index.shifted | 86 |
| abstract_inverted_index.various | 165 |
| abstract_inverted_index.visible | 42 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.Language | 20, 100 |
| abstract_inverted_index.analysis | 2, 31, 191 |
| abstract_inverted_index.detailed | 140 |
| abstract_inverted_index.discrete | 66 |
| abstract_inverted_index.existing | 109, 134 |
| abstract_inverted_index.in-depth | 130 |
| abstract_inverted_index.involved | 178 |
| abstract_inverted_index.learning | 13 |
| abstract_inverted_index.methods, | 135 |
| abstract_inverted_index.modeling | 53, 76 |
| abstract_inverted_index.overview | 131 |
| abstract_inverted_index.provides | 126 |
| abstract_inverted_index.research | 50, 88, 146 |
| abstract_inverted_index.sequence | 52 |
| abstract_inverted_index.taxonomy | 141 |
| abstract_inverted_index.variates | 80 |
| abstract_inverted_index.analysis. | 124 |
| abstract_inverted_index.community | 45 |
| abstract_inverted_index.discusses | 113 |
| abstract_inverted_index.framework | 181 |
| abstract_inverted_index.including | 148 |
| abstract_inverted_index.inspiring | 6 |
| abstract_inverted_index.questions | 147 |
| abstract_inverted_index.witnessed | 4 |
| abstract_inverted_index.advantages | 115 |
| abstract_inverted_index.attentions | 89 |
| abstract_inverted_index.challenges | 73, 171 |
| abstract_inverted_index.continuous | 61 |
| abstract_inverted_index.directions | 185 |
| abstract_inverted_index.explicitly | 75 |
| abstract_inverted_index.leveraging | 25 |
| abstract_inverted_index.successful | 93 |
| abstract_inverted_index.development | 7 |
| abstract_inverted_index.discrepancy | 59 |
| abstract_inverted_index.literature, | 110 |
| abstract_inverted_index.predominant | 49 |
| abstract_inverted_index.traditional | 9 |
| abstract_inverted_index.Transformers | 17 |
| abstract_inverted_index.correlations | 78 |
| abstract_inverted_index.multivariate | 82 |
| abstract_inverted_index.Additionally, | 167 |
| abstract_inverted_index.comprehensive | 128 |
| abstract_inverted_index.autoregressive | 10 |
| abstract_inverted_index.post-processing | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |