Hate Content Detection via Novel Pre-Processing Sequencing and Ensemble Methods Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05134
Social media, particularly Twitter, has seen a significant increase in incidents like trolling and hate speech. Thus, identifying hate speech is the need of the hour. This paper introduces a computational framework to curb the hate content on the web. Specifically, this study presents an exhaustive study of pre-processing approaches by studying the impact of changing the sequence of text pre-processing operations for the identification of hate content. The best-performing pre-processing sequence, when implemented with popular classification approaches like Support Vector Machine, Random Forest, Decision Tree, Logistic Regression and K-Neighbor provides a considerable boost in performance. Additionally, the best pre-processing sequence is used in conjunction with different ensemble methods, such as bagging, boosting and stacking to improve the performance further. Three publicly available benchmark datasets (WZ-LS, DT, and FOUNTA), were used to evaluate the proposed approach for hate speech identification. The proposed approach achieves a maximum accuracy of 95.14% highlighting the effectiveness of the unique pre-processing approach along with an ensemble classifier.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05134
- https://arxiv.org/pdf/2409.05134
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403617560
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403617560Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05134Digital Object Identifier
- Title
-
Hate Content Detection via Novel Pre-Processing Sequencing and Ensemble MethodsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-08Full publication date if available
- Authors
-
Anusha Chhabra, Dinesh Kumar VishwakarmaList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05134Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05134Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05134Direct OA link when available
- Concepts
-
Computer science, Content (measure theory), Computational biology, Biology, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403617560 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05134 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05134 |
| ids.openalex | https://openalex.org/W4403617560 |
| fwci | |
| type | preprint |
| title | Hate Content Detection via Novel Pre-Processing Sequencing and Ensemble Methods |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5534522533416748 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2778152352 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4397461712360382 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5165061 |
| concepts[1].display_name | Content (measure theory) |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3863760530948639 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.19594618678092957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.14919644594192505 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5534522533416748 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/content |
| keywords[1].score | 0.4397461712360382 |
| keywords[1].display_name | Content (measure theory) |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.3863760530948639 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.19594618678092957 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.14919644594192505 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05134 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05134 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05134 |
| locations[1].id | doi:10.48550/arxiv.2409.05134 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05134 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083748222 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Anusha Chhabra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chhabra, Anusha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021449557 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1026-0047 |
| authorships[1].author.display_name | Dinesh Kumar Vishwakarma |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Vishwakarma, Dinesh Kumar |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05134 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hate Content Detection via Novel Pre-Processing Sequencing and Ensemble Methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05134 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05134 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05134 |
| primary_location.id | pmh:oai:arXiv.org:2409.05134 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05134 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05134 |
| publication_date | 2024-09-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 29, 91, 144 |
| abstract_inverted_index.an | 44, 159 |
| abstract_inverted_index.as | 110 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.in | 9, 94, 103 |
| abstract_inverted_index.is | 20, 101 |
| abstract_inverted_index.of | 23, 47, 54, 58, 65, 147, 152 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 32, 115, 131 |
| abstract_inverted_index.DT, | 126 |
| abstract_inverted_index.The | 68, 140 |
| abstract_inverted_index.and | 13, 88, 113, 127 |
| abstract_inverted_index.for | 62, 136 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.the | 21, 24, 34, 38, 52, 56, 63, 97, 117, 133, 150, 153 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.best | 98 |
| abstract_inverted_index.curb | 33 |
| abstract_inverted_index.hate | 14, 18, 35, 66, 137 |
| abstract_inverted_index.like | 11, 78 |
| abstract_inverted_index.need | 22 |
| abstract_inverted_index.seen | 5 |
| abstract_inverted_index.such | 109 |
| abstract_inverted_index.text | 59 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.used | 102, 130 |
| abstract_inverted_index.web. | 39 |
| abstract_inverted_index.were | 129 |
| abstract_inverted_index.when | 72 |
| abstract_inverted_index.with | 74, 105, 158 |
| abstract_inverted_index.Three | 120 |
| abstract_inverted_index.Thus, | 16 |
| abstract_inverted_index.Tree, | 85 |
| abstract_inverted_index.along | 157 |
| abstract_inverted_index.boost | 93 |
| abstract_inverted_index.hour. | 25 |
| abstract_inverted_index.paper | 27 |
| abstract_inverted_index.study | 42, 46 |
| abstract_inverted_index.95.14% | 148 |
| abstract_inverted_index.Random | 82 |
| abstract_inverted_index.Social | 0 |
| abstract_inverted_index.Vector | 80 |
| abstract_inverted_index.impact | 53 |
| abstract_inverted_index.media, | 1 |
| abstract_inverted_index.speech | 19, 138 |
| abstract_inverted_index.unique | 154 |
| abstract_inverted_index.(WZ-LS, | 125 |
| abstract_inverted_index.Forest, | 83 |
| abstract_inverted_index.Support | 79 |
| abstract_inverted_index.content | 36 |
| abstract_inverted_index.improve | 116 |
| abstract_inverted_index.maximum | 145 |
| abstract_inverted_index.popular | 75 |
| abstract_inverted_index.speech. | 15 |
| abstract_inverted_index.Decision | 84 |
| abstract_inverted_index.FOUNTA), | 128 |
| abstract_inverted_index.Logistic | 86 |
| abstract_inverted_index.Machine, | 81 |
| abstract_inverted_index.Twitter, | 3 |
| abstract_inverted_index.accuracy | 146 |
| abstract_inverted_index.achieves | 143 |
| abstract_inverted_index.approach | 135, 142, 156 |
| abstract_inverted_index.bagging, | 111 |
| abstract_inverted_index.boosting | 112 |
| abstract_inverted_index.changing | 55 |
| abstract_inverted_index.content. | 67 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.ensemble | 107, 160 |
| abstract_inverted_index.evaluate | 132 |
| abstract_inverted_index.further. | 119 |
| abstract_inverted_index.increase | 8 |
| abstract_inverted_index.methods, | 108 |
| abstract_inverted_index.presents | 43 |
| abstract_inverted_index.proposed | 134, 141 |
| abstract_inverted_index.provides | 90 |
| abstract_inverted_index.publicly | 121 |
| abstract_inverted_index.sequence | 57, 100 |
| abstract_inverted_index.stacking | 114 |
| abstract_inverted_index.studying | 51 |
| abstract_inverted_index.trolling | 12 |
| abstract_inverted_index.available | 122 |
| abstract_inverted_index.benchmark | 123 |
| abstract_inverted_index.different | 106 |
| abstract_inverted_index.framework | 31 |
| abstract_inverted_index.incidents | 10 |
| abstract_inverted_index.sequence, | 71 |
| abstract_inverted_index.K-Neighbor | 89 |
| abstract_inverted_index.Regression | 87 |
| abstract_inverted_index.approaches | 49, 77 |
| abstract_inverted_index.exhaustive | 45 |
| abstract_inverted_index.introduces | 28 |
| abstract_inverted_index.operations | 61 |
| abstract_inverted_index.classifier. | 161 |
| abstract_inverted_index.conjunction | 104 |
| abstract_inverted_index.identifying | 17 |
| abstract_inverted_index.implemented | 73 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.considerable | 92 |
| abstract_inverted_index.highlighting | 149 |
| abstract_inverted_index.particularly | 2 |
| abstract_inverted_index.performance. | 95 |
| abstract_inverted_index.Additionally, | 96 |
| abstract_inverted_index.Specifically, | 40 |
| abstract_inverted_index.computational | 30 |
| abstract_inverted_index.effectiveness | 151 |
| abstract_inverted_index.classification | 76 |
| abstract_inverted_index.identification | 64 |
| abstract_inverted_index.pre-processing | 48, 60, 70, 99, 155 |
| abstract_inverted_index.best-performing | 69 |
| abstract_inverted_index.identification. | 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |