Hazy images dataset with localized light sources for experimental evaluation of dehazing methods Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.22323/1.429.0019
Image haze removal methods have taken increasing attention of researchers. At the same time, an objective comparison of haze removal methods struggles because of the lack of real data. Capturing pairs of images of the same scene with presence/absence of haze in real environment is a very complicated task. Therefore, the most of modern image haze removal datasets contain artificial images, generated by some model of atmospheric scattering and known scene depth. Among the few real datasets, there are almost no datasets consisting of images obtained in low light conditions with artificial light sources, which allows evaluating the effectiveness of nighttime haze removal methods. In this paper, we present such dataset, consisting of images of 2 scenes at 4 lighting levels and 4 levels of haze density. The scenes has varying "complexity" – the first scene consists of objects with a simpler texture and shape (smooth, rectangular and round objects); the second scene is more complex – it consists of objects with small details, protruding parts and localized light sources. All images were taken indoors in a controlled environment. An experimental evaluation of state-of-the-art haze removal methods was carried out on the collected dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22323/1.429.0019
- https://pos.sissa.it/429/019/pdf
- OA Status
- gold
- Cited By
- 2
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309686894
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309686894Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22323/1.429.0019Digital Object Identifier
- Title
-
Hazy images dataset with localized light sources for experimental evaluation of dehazing methodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-15Full publication date if available
- Authors
-
Andrei Igorevich Filin, Andrey Kopylov, Oleg Seredin, Inessa GrachevaList of authors in order
- Landing page
-
https://doi.org/10.22323/1.429.0019Publisher landing page
- PDF URL
-
https://pos.sissa.it/429/019/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://pos.sissa.it/429/019/pdfDirect OA link when available
- Concepts
-
Haze, Computer science, Artificial intelligence, Computer vision, Image (mathematics), Light scattering, Texture (cosmology), Remote sensing, Scattering, Geography, Optics, Meteorology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309686894 |
|---|---|
| doi | https://doi.org/10.22323/1.429.0019 |
| ids.doi | https://doi.org/10.22323/1.429.0019 |
| ids.openalex | https://openalex.org/W4309686894 |
| fwci | 0.2475836 |
| type | article |
| title | Hazy images dataset with localized light sources for experimental evaluation of dehazing methods |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 019 |
| biblio.first_page | 019 |
| topics[0].id | https://openalex.org/T11019 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Enhancement Techniques |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79974267 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9575848579406738 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q643546 |
| concepts[0].display_name | Haze |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7470537424087524 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6940826177597046 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.664361298084259 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4789491295814514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C120456961 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4628998041152954 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[5].display_name | Light scattering |
| concepts[6].id | https://openalex.org/C2781195486 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42699185013771057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[6].display_name | Texture (cosmology) |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3920953869819641 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C191486275 |
| concepts[8].level | 2 |
| concepts[8].score | 0.26421189308166504 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210028 |
| concepts[8].display_name | Scattering |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14077508449554443 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10285460948944092 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C153294291 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06881919503211975 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[11].display_name | Meteorology |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.05693569779396057 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/haze |
| keywords[0].score | 0.9575848579406738 |
| keywords[0].display_name | Haze |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7470537424087524 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6940826177597046 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.664361298084259 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.4789491295814514 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/light-scattering |
| keywords[5].score | 0.4628998041152954 |
| keywords[5].display_name | Light scattering |
| keywords[6].id | https://openalex.org/keywords/texture |
| keywords[6].score | 0.42699185013771057 |
| keywords[6].display_name | Texture (cosmology) |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.3920953869819641 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/scattering |
| keywords[8].score | 0.26421189308166504 |
| keywords[8].display_name | Scattering |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.14077508449554443 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.10285460948944092 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/meteorology |
| keywords[11].score | 0.06881919503211975 |
| keywords[11].display_name | Meteorology |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.05693569779396057 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.22323/1.429.0019 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://pos.sissa.it/429/019/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022) |
| locations[0].landing_page_url | https://doi.org/10.22323/1.429.0019 |
| locations[1].id | pmh:oai:pos.sissa.it:DLCP2022/019 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196127 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Proceedings Of Science |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://pos.sissa.it/429/019/ |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057954280 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Andrei Igorevich Filin |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[0].affiliations[0].raw_affiliation_string | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I127366699 |
| authorships[0].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Tula State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Andrei Igorevich Filin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[1].author.id | https://openalex.org/A5074312115 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3193-583X |
| authorships[1].author.display_name | Andrey Kopylov |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[1].affiliations[0].raw_affiliation_string | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I127366699 |
| authorships[1].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Tula State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrei Valerievich Kopylov |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[2].author.id | https://openalex.org/A5045892613 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0410-7705 |
| authorships[2].author.display_name | Oleg Seredin |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[2].affiliations[0].raw_affiliation_string | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[2].institutions[0].id | https://openalex.org/I127366699 |
| authorships[2].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | Tula State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Oleg Seredin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[3].author.id | https://openalex.org/A5011047460 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3367-3538 |
| authorships[3].author.display_name | Inessa Gracheva |
| authorships[3].countries | RU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| authorships[3].institutions[0].id | https://openalex.org/I127366699 |
| authorships[3].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[3].institutions[0].country_code | RU |
| authorships[3].institutions[0].display_name | Tula State University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Inessa Gracheva |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Laboratory of Cognitive Technologies and Simulation Systems, Tula State University, 92, Lenin ave., Tula, 300012, Russia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pos.sissa.it/429/019/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hazy images dataset with localized light sources for experimental evaluation of dehazing methods |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11019 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Enhancement Techniques |
| related_works | https://openalex.org/W2397673276, https://openalex.org/W2318437963, https://openalex.org/W2348696601, https://openalex.org/W2394444438, https://openalex.org/W2377355001, https://openalex.org/W2387386748, https://openalex.org/W2377493372, https://openalex.org/W2964624622, https://openalex.org/W2388134306, https://openalex.org/W2371905190 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.22323/1.429.0019 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://pos.sissa.it/429/019/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022) |
| best_oa_location.landing_page_url | https://doi.org/10.22323/1.429.0019 |
| primary_location.id | doi:10.22323/1.429.0019 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://pos.sissa.it/429/019/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022) |
| primary_location.landing_page_url | https://doi.org/10.22323/1.429.0019 |
| publication_date | 2022-11-15 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6675559485, https://openalex.org/W6630294587, https://openalex.org/W6606712015, https://openalex.org/W6606320851, https://openalex.org/W3215985143, https://openalex.org/W2128254161, https://openalex.org/W3021850033, https://openalex.org/W2156936307, https://openalex.org/W2296690173, https://openalex.org/W1541368976, https://openalex.org/W2467473805, https://openalex.org/W2779963526, https://openalex.org/W2963928582, https://openalex.org/W2970360808, https://openalex.org/W3041159045, https://openalex.org/W2998249728 |
| referenced_works_count | 16 |
| abstract_inverted_index.2 | 115 |
| abstract_inverted_index.4 | 118, 122 |
| abstract_inverted_index.a | 45, 140, 176 |
| abstract_inverted_index.An | 179 |
| abstract_inverted_index.At | 10 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.an | 14 |
| abstract_inverted_index.at | 117 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.in | 41, 86, 175 |
| abstract_inverted_index.is | 44, 153 |
| abstract_inverted_index.it | 157 |
| abstract_inverted_index.no | 80 |
| abstract_inverted_index.of | 8, 17, 23, 26, 31, 33, 39, 52, 65, 83, 99, 112, 114, 124, 137, 159, 182 |
| abstract_inverted_index.on | 190 |
| abstract_inverted_index.we | 107 |
| abstract_inverted_index.All | 170 |
| abstract_inverted_index.The | 127 |
| abstract_inverted_index.and | 68, 121, 143, 147, 166 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.few | 74 |
| abstract_inverted_index.has | 129 |
| abstract_inverted_index.low | 87 |
| abstract_inverted_index.out | 189 |
| abstract_inverted_index.the | 11, 24, 34, 50, 73, 97, 133, 150, 191 |
| abstract_inverted_index.was | 187 |
| abstract_inverted_index.– | 132, 156 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.haze | 1, 18, 40, 55, 101, 125, 184 |
| abstract_inverted_index.lack | 25 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.most | 51 |
| abstract_inverted_index.real | 27, 42, 75 |
| abstract_inverted_index.same | 12, 35 |
| abstract_inverted_index.some | 63 |
| abstract_inverted_index.such | 109 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.very | 46 |
| abstract_inverted_index.were | 172 |
| abstract_inverted_index.with | 37, 90, 139, 161 |
| abstract_inverted_index.Among | 72 |
| abstract_inverted_index.Image | 0 |
| abstract_inverted_index.data. | 28 |
| abstract_inverted_index.first | 134 |
| abstract_inverted_index.image | 54 |
| abstract_inverted_index.known | 69 |
| abstract_inverted_index.light | 88, 92, 168 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.pairs | 30 |
| abstract_inverted_index.parts | 165 |
| abstract_inverted_index.round | 148 |
| abstract_inverted_index.scene | 36, 70, 135, 152 |
| abstract_inverted_index.shape | 144 |
| abstract_inverted_index.small | 162 |
| abstract_inverted_index.taken | 5, 173 |
| abstract_inverted_index.task. | 48 |
| abstract_inverted_index.there | 77 |
| abstract_inverted_index.time, | 13 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.allows | 95 |
| abstract_inverted_index.almost | 79 |
| abstract_inverted_index.depth. | 71 |
| abstract_inverted_index.images | 32, 84, 113, 171 |
| abstract_inverted_index.levels | 120, 123 |
| abstract_inverted_index.modern | 53 |
| abstract_inverted_index.paper, | 106 |
| abstract_inverted_index.scenes | 116, 128 |
| abstract_inverted_index.second | 151 |
| abstract_inverted_index.because | 22 |
| abstract_inverted_index.carried | 188 |
| abstract_inverted_index.complex | 155 |
| abstract_inverted_index.contain | 58 |
| abstract_inverted_index.images, | 60 |
| abstract_inverted_index.indoors | 174 |
| abstract_inverted_index.methods | 3, 20, 186 |
| abstract_inverted_index.objects | 138, 160 |
| abstract_inverted_index.present | 108 |
| abstract_inverted_index.removal | 2, 19, 56, 102, 185 |
| abstract_inverted_index.simpler | 141 |
| abstract_inverted_index.texture | 142 |
| abstract_inverted_index.varying | 130 |
| abstract_inverted_index.(smooth, | 145 |
| abstract_inverted_index.consists | 136, 158 |
| abstract_inverted_index.dataset, | 110 |
| abstract_inverted_index.dataset. | 193 |
| abstract_inverted_index.datasets | 57, 81 |
| abstract_inverted_index.density. | 126 |
| abstract_inverted_index.details, | 163 |
| abstract_inverted_index.lighting | 119 |
| abstract_inverted_index.methods. | 103 |
| abstract_inverted_index.obtained | 85 |
| abstract_inverted_index.sources, | 93 |
| abstract_inverted_index.sources. | 169 |
| abstract_inverted_index.Capturing | 29 |
| abstract_inverted_index.attention | 7 |
| abstract_inverted_index.collected | 192 |
| abstract_inverted_index.datasets, | 76 |
| abstract_inverted_index.generated | 61 |
| abstract_inverted_index.localized | 167 |
| abstract_inverted_index.nighttime | 100 |
| abstract_inverted_index.objective | 15 |
| abstract_inverted_index.objects); | 149 |
| abstract_inverted_index.struggles | 21 |
| abstract_inverted_index.Therefore, | 49 |
| abstract_inverted_index.artificial | 59, 91 |
| abstract_inverted_index.comparison | 16 |
| abstract_inverted_index.conditions | 89 |
| abstract_inverted_index.consisting | 82, 111 |
| abstract_inverted_index.controlled | 177 |
| abstract_inverted_index.evaluating | 96 |
| abstract_inverted_index.evaluation | 181 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.protruding | 164 |
| abstract_inverted_index.scattering | 67 |
| abstract_inverted_index.atmospheric | 66 |
| abstract_inverted_index.complicated | 47 |
| abstract_inverted_index.environment | 43 |
| abstract_inverted_index.rectangular | 146 |
| abstract_inverted_index."complexity" | 131 |
| abstract_inverted_index.environment. | 178 |
| abstract_inverted_index.experimental | 180 |
| abstract_inverted_index.researchers. | 9 |
| abstract_inverted_index.effectiveness | 98 |
| abstract_inverted_index.presence/absence | 38 |
| abstract_inverted_index.state-of-the-art | 183 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.51568792 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |