HDLTex: Hierarchical Deep Learning for Text Classification Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1109/icmla.2017.0-134
The continually increasing number of documents produced each year\nnecessitates ever improving information processing methods for searching,\nretrieving, and organizing text. Central to these information processing\nmethods is document classification, which has become an important application\nfor supervised learning. Recently the performance of these traditional\nclassifiers has degraded as the number of documents has increased. This is\nbecause along with this growth in the number of documents has come an increase\nin the number of categories. This paper approaches this problem differently\nfrom current document classification methods that view the problem as\nmulti-class classification. Instead we perform hierarchical classification\nusing an approach we call Hierarchical Deep Learning for Text classification\n(HDLTex). HDLTex employs stacks of deep learning architectures to provide\nspecialized understanding at each level of the document hierarchy.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icmla.2017.0-134
- OA Status
- green
- Cited By
- 426
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2759474451
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2759474451Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icmla.2017.0-134Digital Object Identifier
- Title
-
HDLTex: Hierarchical Deep Learning for Text ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-12-01Full publication date if available
- Authors
-
Kamran Kowsari, Donald E. Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi, Matthew S. Gerber, Laura E. BarnesList of authors in order
- Landing page
-
https://doi.org/10.1109/icmla.2017.0-134Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1709.08267Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Hierarchy, Document classification, Class (philosophy), Deep learning, One-class classification, Machine learning, Supervised learning, Class hierarchy, Information retrieval, Artificial neural network, Classifier (UML), Programming language, Economics, Object-oriented programming, Market economyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
426Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 44, 2024: 54, 2023: 72, 2022: 53, 2021: 74Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2759474451 |
|---|---|
| doi | https://doi.org/10.1109/icmla.2017.0-134 |
| ids.doi | https://doi.org/10.1109/icmla.2017.0-134 |
| ids.mag | 2759474451 |
| ids.openalex | https://openalex.org/W2759474451 |
| fwci | 29.56417328 |
| type | article |
| title | HDLTex: Hierarchical Deep Learning for Text Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 371 |
| biblio.first_page | 364 |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T10028 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8167159557342529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6851649284362793 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31170391 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6743728518486023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188619 |
| concepts[2].display_name | Hierarchy |
| concepts[3].id | https://openalex.org/C2780479914 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6666849851608276 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q302088 |
| concepts[3].display_name | Document classification |
| concepts[4].id | https://openalex.org/C2777212361 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5266998410224915 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[4].display_name | Class (philosophy) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47027140855789185 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C34872919 |
| concepts[6].level | 3 |
| concepts[6].score | 0.468462198972702 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7092302 |
| concepts[6].display_name | One-class classification |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45786669850349426 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C136389625 |
| concepts[8].level | 3 |
| concepts[8].score | 0.435940682888031 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[8].display_name | Supervised learning |
| concepts[9].id | https://openalex.org/C2781289151 |
| concepts[9].level | 3 |
| concepts[9].score | 0.428713321685791 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2903989 |
| concepts[9].display_name | Class hierarchy |
| concepts[10].id | https://openalex.org/C23123220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39477115869522095 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[10].display_name | Information retrieval |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2883434295654297 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C95623464 |
| concepts[12].level | 2 |
| concepts[12].score | 0.15559789538383484 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[12].display_name | Classifier (UML) |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C73752529 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q79872 |
| concepts[15].display_name | Object-oriented programming |
| concepts[16].id | https://openalex.org/C34447519 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q179522 |
| concepts[16].display_name | Market economy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8167159557342529 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6851649284362793 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/hierarchy |
| keywords[2].score | 0.6743728518486023 |
| keywords[2].display_name | Hierarchy |
| keywords[3].id | https://openalex.org/keywords/document-classification |
| keywords[3].score | 0.6666849851608276 |
| keywords[3].display_name | Document classification |
| keywords[4].id | https://openalex.org/keywords/class |
| keywords[4].score | 0.5266998410224915 |
| keywords[4].display_name | Class (philosophy) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.47027140855789185 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/one-class-classification |
| keywords[6].score | 0.468462198972702 |
| keywords[6].display_name | One-class classification |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.45786669850349426 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/supervised-learning |
| keywords[8].score | 0.435940682888031 |
| keywords[8].display_name | Supervised learning |
| keywords[9].id | https://openalex.org/keywords/class-hierarchy |
| keywords[9].score | 0.428713321685791 |
| keywords[9].display_name | Class hierarchy |
| keywords[10].id | https://openalex.org/keywords/information-retrieval |
| keywords[10].score | 0.39477115869522095 |
| keywords[10].display_name | Information retrieval |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.2883434295654297 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/classifier |
| keywords[12].score | 0.15559789538383484 |
| keywords[12].display_name | Classifier (UML) |
| language | en |
| locations[0].id | doi:10.1109/icmla.2017.0-134 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| locations[0].landing_page_url | https://doi.org/10.1109/icmla.2017.0-134 |
| locations[1].id | pmh:oai:arXiv.org:1709.08267 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1709.08267 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1709.08267 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5001354047 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6451-4786 |
| authorships[0].author.display_name | Kamran Kowsari |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Virginia, Charlottesville, VA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I51556381 |
| authorships[0].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Virginia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kamran Kowsari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Virginia, Charlottesville, VA, USA |
| authorships[1].author.id | https://openalex.org/A5086462231 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9140-2632 |
| authorships[1].author.display_name | Donald E. Brown |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[1].affiliations[0].raw_affiliation_string | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I51556381 |
| authorships[1].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Virginia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Donald E. Brown |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| authorships[2].author.id | https://openalex.org/A5037262149 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mojtaba Heidarysafa |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2799765794 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of System and Information Engineering, University of Virginia, Charlottesville, VA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I2799765794 |
| authorships[2].institutions[0].ror | https://ror.org/00wn7d965 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799765794 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Virginia Health System |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mojtaba Heidarysafa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of System and Information Engineering, University of Virginia, Charlottesville, VA, USA |
| authorships[3].author.id | https://openalex.org/A5081841950 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2001-3488 |
| authorships[3].author.display_name | Kiana Jafari Meimandi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2799765794 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of System and Information Engineering, University of Virginia, Charlottesville, VA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I2799765794 |
| authorships[3].institutions[0].ror | https://ror.org/00wn7d965 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799765794 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Virginia Health System |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kiana Jafari Meimandi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of System and Information Engineering, University of Virginia, Charlottesville, VA, USA |
| authorships[4].author.id | https://openalex.org/A5034370354 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9069-4100 |
| authorships[4].author.display_name | Matthew S. Gerber |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[4].affiliations[0].raw_affiliation_string | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I51556381 |
| authorships[4].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Virginia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Matthew S. Gerber |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| authorships[5].author.id | https://openalex.org/A5012728152 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8224-5164 |
| authorships[5].author.display_name | Laura E. Barnes |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[5].affiliations[0].raw_affiliation_string | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I51556381 |
| authorships[5].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Virginia |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Laura E. Barnes |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Data Science Institute, University of Virginia, Charlottesville, VA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1709.08267 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HDLTex: Hierarchical Deep Learning for Text Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W2079027950, https://openalex.org/W2952361316, https://openalex.org/W2357813254, https://openalex.org/W1971029554, https://openalex.org/W4388185001, https://openalex.org/W1975069068, https://openalex.org/W4229654425, https://openalex.org/W2051901529, https://openalex.org/W1541135463, https://openalex.org/W2770245173 |
| cited_by_count | 426 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 44 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 54 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 72 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 53 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 74 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 63 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 43 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 22 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1709.08267 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1709.08267 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1709.08267 |
| primary_location.id | doi:10.1109/icmla.2017.0-134 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) |
| primary_location.landing_page_url | https://doi.org/10.1109/icmla.2017.0-134 |
| publication_date | 2017-12-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2107878631, https://openalex.org/W6632118081, https://openalex.org/W2250539671, https://openalex.org/W1924689489, https://openalex.org/W2118020653, https://openalex.org/W2919115771, https://openalex.org/W2180101149, https://openalex.org/W175058090, https://openalex.org/W6677731448, https://openalex.org/W4213009331, https://openalex.org/W2153125595, https://openalex.org/W2520488855, https://openalex.org/W2005286252, https://openalex.org/W2039741433, https://openalex.org/W2087347434, https://openalex.org/W139586639, https://openalex.org/W6632865047, https://openalex.org/W2135813353, https://openalex.org/W6638545294, https://openalex.org/W2373728039, https://openalex.org/W2100495367, https://openalex.org/W2112796928, https://openalex.org/W2161381512, https://openalex.org/W6685053522, https://openalex.org/W2135013230, https://openalex.org/W4245981568, https://openalex.org/W6676132248, https://openalex.org/W6655478935, https://openalex.org/W2998768810, https://openalex.org/W6676068203, https://openalex.org/W4244170802, https://openalex.org/W6693505360, https://openalex.org/W1523493493, https://openalex.org/W2117225622, https://openalex.org/W1547365836, https://openalex.org/W2963468488, https://openalex.org/W2784367312, https://openalex.org/W1550206324, https://openalex.org/W2170240176, https://openalex.org/W1556145249, https://openalex.org/W2963012544, https://openalex.org/W1533946607, https://openalex.org/W2157331557, https://openalex.org/W2039133703, https://openalex.org/W2079885161, https://openalex.org/W1532325895, https://openalex.org/W2107725114, https://openalex.org/W2106525823, https://openalex.org/W2020816856, https://openalex.org/W4285719527, https://openalex.org/W2301623411, https://openalex.org/W2964331270, https://openalex.org/W1522301498, https://openalex.org/W1841724727, https://openalex.org/W2963921497, https://openalex.org/W2964338186, https://openalex.org/W2282078507, https://openalex.org/W2265846598, https://openalex.org/W1815076433, https://openalex.org/W2271840356, https://openalex.org/W2242287491, https://openalex.org/W2107008379 |
| referenced_works_count | 62 |
| abstract_inverted_index.an | 30, 63, 90 |
| abstract_inverted_index.as | 43 |
| abstract_inverted_index.at | 110 |
| abstract_inverted_index.in | 56 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 4, 38, 46, 59, 67, 103, 113 |
| abstract_inverted_index.to | 20, 107 |
| abstract_inverted_index.we | 86, 92 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 16 |
| abstract_inverted_index.for | 14, 97 |
| abstract_inverted_index.has | 28, 41, 48, 61 |
| abstract_inverted_index.the | 36, 44, 57, 65, 81, 114 |
| abstract_inverted_index.Deep | 95 |
| abstract_inverted_index.Text | 98 |
| abstract_inverted_index.This | 50, 69 |
| abstract_inverted_index.call | 93 |
| abstract_inverted_index.come | 62 |
| abstract_inverted_index.deep | 104 |
| abstract_inverted_index.each | 7, 111 |
| abstract_inverted_index.ever | 9 |
| abstract_inverted_index.that | 79 |
| abstract_inverted_index.this | 54, 72 |
| abstract_inverted_index.view | 80 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.along | 52 |
| abstract_inverted_index.level | 112 |
| abstract_inverted_index.paper | 70 |
| abstract_inverted_index.text. | 18 |
| abstract_inverted_index.these | 21, 39 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.HDLTex | 100 |
| abstract_inverted_index.become | 29 |
| abstract_inverted_index.growth | 55 |
| abstract_inverted_index.number | 3, 45, 58, 66 |
| abstract_inverted_index.stacks | 102 |
| abstract_inverted_index.Central | 19 |
| abstract_inverted_index.Instead | 85 |
| abstract_inverted_index.current | 75 |
| abstract_inverted_index.employs | 101 |
| abstract_inverted_index.methods | 13, 78 |
| abstract_inverted_index.perform | 87 |
| abstract_inverted_index.problem | 73, 82 |
| abstract_inverted_index.Learning | 96 |
| abstract_inverted_index.Recently | 35 |
| abstract_inverted_index.approach | 91 |
| abstract_inverted_index.degraded | 42 |
| abstract_inverted_index.document | 25, 76, 115 |
| abstract_inverted_index.learning | 105 |
| abstract_inverted_index.produced | 6 |
| abstract_inverted_index.documents | 5, 47, 60 |
| abstract_inverted_index.important | 31 |
| abstract_inverted_index.improving | 10 |
| abstract_inverted_index.learning. | 34 |
| abstract_inverted_index.approaches | 71 |
| abstract_inverted_index.increased. | 49 |
| abstract_inverted_index.increasing | 2 |
| abstract_inverted_index.organizing | 17 |
| abstract_inverted_index.processing | 12 |
| abstract_inverted_index.supervised | 33 |
| abstract_inverted_index.categories. | 68 |
| abstract_inverted_index.continually | 1 |
| abstract_inverted_index.information | 11, 22 |
| abstract_inverted_index.is\nbecause | 51 |
| abstract_inverted_index.performance | 37 |
| abstract_inverted_index.Hierarchical | 94 |
| abstract_inverted_index.hierarchical | 88 |
| abstract_inverted_index.hierarchy.\n | 116 |
| abstract_inverted_index.increase\nin | 64 |
| abstract_inverted_index.architectures | 106 |
| abstract_inverted_index.understanding | 109 |
| abstract_inverted_index.classification | 77 |
| abstract_inverted_index.as\nmulti-class | 83 |
| abstract_inverted_index.classification, | 26 |
| abstract_inverted_index.classification. | 84 |
| abstract_inverted_index.application\nfor | 32 |
| abstract_inverted_index.differently\nfrom | 74 |
| abstract_inverted_index.year\nnecessitates | 8 |
| abstract_inverted_index.processing\nmethods | 23 |
| abstract_inverted_index.provide\nspecialized | 108 |
| abstract_inverted_index.classification\nusing | 89 |
| abstract_inverted_index.searching,\nretrieving, | 15 |
| abstract_inverted_index.traditional\nclassifiers | 40 |
| abstract_inverted_index.classification\n(HDLTex). | 99 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.99598181 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |