Head-Free Lightweight Semantic Segmentation with Linear Transformer Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.04648
Existing semantic segmentation works have been mainly focused on designing effective decoders; however, the computational load introduced by the overall structure has long been ignored, which hinders their applications on resource-constrained hardwares. In this paper, we propose a head-free lightweight architecture specifically for semantic segmentation, named Adaptive Frequency Transformer. It adopts a parallel architecture to leverage prototype representations as specific learnable local descriptions which replaces the decoder and preserves the rich image semantics on high-resolution features. Although removing the decoder compresses most of the computation, the accuracy of the parallel structure is still limited by low computational resources. Therefore, we employ heterogeneous operators (CNN and Vision Transformer) for pixel embedding and prototype representations to further save computational costs. Moreover, it is very difficult to linearize the complexity of the vision Transformer from the perspective of spatial domain. Due to the fact that semantic segmentation is very sensitive to frequency information, we construct a lightweight prototype learning block with adaptive frequency filter of complexity $O(n)$ to replace standard self attention with $O(n^{2})$. Extensive experiments on widely adopted datasets demonstrate that our model achieves superior accuracy while retaining only 3M parameters. On the ADE20K dataset, our model achieves 41.8 mIoU and 4.6 GFLOPs, which is 4.4 mIoU higher than Segformer, with 45% less GFLOPs. On the Cityscapes dataset, our model achieves 78.7 mIoU and 34.4 GFLOPs, which is 2.5 mIoU higher than Segformer with 72.5% less GFLOPs. Code is available at https://github.com/dongbo811/AFFormer.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.04648
- https://arxiv.org/pdf/2301.04648
- OA Status
- green
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4315884020
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4315884020Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.04648Digital Object Identifier
- Title
-
Head-Free Lightweight Semantic Segmentation with Linear TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-11Full publication date if available
- Authors
-
Bo Dong, Pichao Wang, Fan WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.04648Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.04648Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.04648Direct OA link when available
- Concepts
-
Computer science, FLOPS, Segmentation, Transformer, Artificial intelligence, Computer vision, Computer engineering, Parallel computing, Voltage, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4315884020 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.04648 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.04648 |
| ids.openalex | https://openalex.org/W4315884020 |
| fwci | |
| type | preprint |
| title | Head-Free Lightweight Semantic Segmentation with Linear Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8123371005058289 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C3826847 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7970945835113525 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188768 |
| concepts[1].display_name | FLOPS |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6701987981796265 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6426037549972534 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4974220097064972 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40941035747528076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C113775141 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37275803089141846 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[6].display_name | Computer engineering |
| concepts[7].id | https://openalex.org/C173608175 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3699706196784973 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[7].display_name | Parallel computing |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8123371005058289 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/flops |
| keywords[1].score | 0.7970945835113525 |
| keywords[1].display_name | FLOPS |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6701987981796265 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6426037549972534 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4974220097064972 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.40941035747528076 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/computer-engineering |
| keywords[6].score | 0.37275803089141846 |
| keywords[6].display_name | Computer engineering |
| keywords[7].id | https://openalex.org/keywords/parallel-computing |
| keywords[7].score | 0.3699706196784973 |
| keywords[7].display_name | Parallel computing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.04648 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.04648 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.04648 |
| locations[1].id | doi:10.48550/arxiv.2301.04648 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.04648 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100746742 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9189-9506 |
| authorships[0].author.display_name | Bo Dong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong, Bo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5042680345 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1430-0237 |
| authorships[1].author.display_name | Pichao Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Pichao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100719173 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7320-1119 |
| authorships[2].author.display_name | Fan Wang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wang, Fan |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.04648 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Head-Free Lightweight Semantic Segmentation with Linear Transformer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4315697128, https://openalex.org/W4382323155, https://openalex.org/W3102845713, https://openalex.org/W3205506801, https://openalex.org/W2971502891, https://openalex.org/W4287067436, https://openalex.org/W4280599700, https://openalex.org/W3183570023, https://openalex.org/W4292794827, https://openalex.org/W4224939635 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.04648 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.04648 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.04648 |
| primary_location.id | pmh:oai:arXiv.org:2301.04648 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.04648 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.04648 |
| publication_date | 2023-01-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 51, 152 |
| abstract_inverted_index.3M | 187 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.It | 49 |
| abstract_inverted_index.On | 189, 212 |
| abstract_inverted_index.as | 58 |
| abstract_inverted_index.at | 238 |
| abstract_inverted_index.by | 17, 94 |
| abstract_inverted_index.is | 91, 120, 144, 202, 225, 236 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 82, 87, 127, 134, 161 |
| abstract_inverted_index.on | 8, 29, 73, 173 |
| abstract_inverted_index.to | 54, 113, 123, 138, 147, 164 |
| abstract_inverted_index.we | 35, 99, 150 |
| abstract_inverted_index.2.5 | 226 |
| abstract_inverted_index.4.4 | 203 |
| abstract_inverted_index.4.6 | 199 |
| abstract_inverted_index.45% | 209 |
| abstract_inverted_index.Due | 137 |
| abstract_inverted_index.and | 67, 104, 110, 198, 221 |
| abstract_inverted_index.for | 42, 107 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.low | 95 |
| abstract_inverted_index.our | 179, 193, 216 |
| abstract_inverted_index.the | 13, 18, 65, 69, 78, 83, 85, 88, 125, 128, 132, 139, 190, 213 |
| abstract_inverted_index.(CNN | 103 |
| abstract_inverted_index.34.4 | 222 |
| abstract_inverted_index.41.8 | 196 |
| abstract_inverted_index.78.7 | 219 |
| abstract_inverted_index.Code | 235 |
| abstract_inverted_index.been | 5, 23 |
| abstract_inverted_index.fact | 140 |
| abstract_inverted_index.from | 131 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.less | 210, 233 |
| abstract_inverted_index.load | 15 |
| abstract_inverted_index.long | 22 |
| abstract_inverted_index.mIoU | 197, 204, 220, 227 |
| abstract_inverted_index.most | 81 |
| abstract_inverted_index.only | 186 |
| abstract_inverted_index.rich | 70 |
| abstract_inverted_index.save | 115 |
| abstract_inverted_index.self | 167 |
| abstract_inverted_index.than | 206, 229 |
| abstract_inverted_index.that | 141, 178 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.very | 121, 145 |
| abstract_inverted_index.with | 157, 169, 208, 231 |
| abstract_inverted_index.72.5% | 232 |
| abstract_inverted_index.block | 156 |
| abstract_inverted_index.image | 71 |
| abstract_inverted_index.local | 61 |
| abstract_inverted_index.model | 180, 194, 217 |
| abstract_inverted_index.named | 45 |
| abstract_inverted_index.pixel | 108 |
| abstract_inverted_index.still | 92 |
| abstract_inverted_index.their | 27 |
| abstract_inverted_index.which | 25, 63, 201, 224 |
| abstract_inverted_index.while | 184 |
| abstract_inverted_index.works | 3 |
| abstract_inverted_index.$O(n)$ | 163 |
| abstract_inverted_index.ADE20K | 191 |
| abstract_inverted_index.Vision | 105 |
| abstract_inverted_index.adopts | 50 |
| abstract_inverted_index.costs. | 117 |
| abstract_inverted_index.employ | 100 |
| abstract_inverted_index.filter | 160 |
| abstract_inverted_index.higher | 205, 228 |
| abstract_inverted_index.mainly | 6 |
| abstract_inverted_index.paper, | 34 |
| abstract_inverted_index.vision | 129 |
| abstract_inverted_index.widely | 174 |
| abstract_inverted_index.GFLOPs, | 200, 223 |
| abstract_inverted_index.GFLOPs. | 211, 234 |
| abstract_inverted_index.adopted | 175 |
| abstract_inverted_index.decoder | 66, 79 |
| abstract_inverted_index.domain. | 136 |
| abstract_inverted_index.focused | 7 |
| abstract_inverted_index.further | 114 |
| abstract_inverted_index.hinders | 26 |
| abstract_inverted_index.limited | 93 |
| abstract_inverted_index.overall | 19 |
| abstract_inverted_index.propose | 36 |
| abstract_inverted_index.replace | 165 |
| abstract_inverted_index.spatial | 135 |
| abstract_inverted_index.Adaptive | 46 |
| abstract_inverted_index.Although | 76 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.accuracy | 86, 183 |
| abstract_inverted_index.achieves | 181, 195, 218 |
| abstract_inverted_index.adaptive | 158 |
| abstract_inverted_index.dataset, | 192, 215 |
| abstract_inverted_index.datasets | 176 |
| abstract_inverted_index.however, | 12 |
| abstract_inverted_index.ignored, | 24 |
| abstract_inverted_index.learning | 155 |
| abstract_inverted_index.leverage | 55 |
| abstract_inverted_index.parallel | 52, 89 |
| abstract_inverted_index.removing | 77 |
| abstract_inverted_index.replaces | 64 |
| abstract_inverted_index.semantic | 1, 43, 142 |
| abstract_inverted_index.specific | 59 |
| abstract_inverted_index.standard | 166 |
| abstract_inverted_index.superior | 182 |
| abstract_inverted_index.Extensive | 171 |
| abstract_inverted_index.Frequency | 47 |
| abstract_inverted_index.Moreover, | 118 |
| abstract_inverted_index.Segformer | 230 |
| abstract_inverted_index.attention | 168 |
| abstract_inverted_index.available | 237 |
| abstract_inverted_index.construct | 151 |
| abstract_inverted_index.decoders; | 11 |
| abstract_inverted_index.designing | 9 |
| abstract_inverted_index.difficult | 122 |
| abstract_inverted_index.effective | 10 |
| abstract_inverted_index.embedding | 109 |
| abstract_inverted_index.features. | 75 |
| abstract_inverted_index.frequency | 148, 159 |
| abstract_inverted_index.head-free | 38 |
| abstract_inverted_index.learnable | 60 |
| abstract_inverted_index.linearize | 124 |
| abstract_inverted_index.operators | 102 |
| abstract_inverted_index.preserves | 68 |
| abstract_inverted_index.prototype | 56, 111, 154 |
| abstract_inverted_index.retaining | 185 |
| abstract_inverted_index.semantics | 72 |
| abstract_inverted_index.sensitive | 146 |
| abstract_inverted_index.structure | 20, 90 |
| abstract_inverted_index.Cityscapes | 214 |
| abstract_inverted_index.Segformer, | 207 |
| abstract_inverted_index.Therefore, | 98 |
| abstract_inverted_index.complexity | 126, 162 |
| abstract_inverted_index.compresses | 80 |
| abstract_inverted_index.hardwares. | 31 |
| abstract_inverted_index.introduced | 16 |
| abstract_inverted_index.resources. | 97 |
| abstract_inverted_index.$O(n^{2})$. | 170 |
| abstract_inverted_index.Transformer | 130 |
| abstract_inverted_index.demonstrate | 177 |
| abstract_inverted_index.experiments | 172 |
| abstract_inverted_index.lightweight | 39, 153 |
| abstract_inverted_index.parameters. | 188 |
| abstract_inverted_index.perspective | 133 |
| abstract_inverted_index.Transformer) | 106 |
| abstract_inverted_index.Transformer. | 48 |
| abstract_inverted_index.applications | 28 |
| abstract_inverted_index.architecture | 40, 53 |
| abstract_inverted_index.computation, | 84 |
| abstract_inverted_index.descriptions | 62 |
| abstract_inverted_index.information, | 149 |
| abstract_inverted_index.segmentation | 2, 143 |
| abstract_inverted_index.specifically | 41 |
| abstract_inverted_index.computational | 14, 96, 116 |
| abstract_inverted_index.heterogeneous | 101 |
| abstract_inverted_index.segmentation, | 44 |
| abstract_inverted_index.high-resolution | 74 |
| abstract_inverted_index.representations | 57, 112 |
| abstract_inverted_index.resource-constrained | 30 |
| abstract_inverted_index.https://github.com/dongbo811/AFFormer. | 239 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |