Head Pose-Based Conditional Regression Forest for Facial Feature Detection Article Swipe
Liyuan Zhuo
,
Huawei Pan
,
Chunming Gao
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.2991/ameii-15.2015.335
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.2991/ameii-15.2015.335
Multi-angles of facial feature detection is still a challenging research.In this paper, the author proposes a precision head pose estimation method as a condition to improve the performance of regression forests, and decreases the missing rate caused by head deflection.The basic idea is used by locality preserving projection, a kind of manifold learning, and nonlinear regression (LPP+NLR) for getting the global information of pose and label it, then utilize trained conditional regression classifier to identify the feature points in global characteristics.The effectiveness of the proposed facial feature detection algorithm is illustrated in the experiments and the comparison with several recent methods.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/ameii-15.2015.335
- https://download.atlantis-press.com/article/22007.pdf
- OA Status
- gold
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1800345109
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1800345109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/ameii-15.2015.335Digital Object Identifier
- Title
-
Head Pose-Based Conditional Regression Forest for Facial Feature DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Liyuan Zhuo, Huawei Pan, Chunming GaoList of authors in order
- Landing page
-
https://doi.org/10.2991/ameii-15.2015.335Publisher landing page
- PDF URL
-
https://download.atlantis-press.com/article/22007.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://download.atlantis-press.com/article/22007.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, Regression, Pattern recognition (psychology), Feature (linguistics), Pose, Classifier (UML), Locality, Random forest, Computer vision, Machine learning, Mathematics, Statistics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1800345109 |
|---|---|
| doi | https://doi.org/10.2991/ameii-15.2015.335 |
| ids.doi | https://doi.org/10.2991/ameii-15.2015.335 |
| ids.mag | 1800345109 |
| ids.openalex | https://openalex.org/W1800345109 |
| fwci | 0.0 |
| type | article |
| title | Head Pose-Based Conditional Regression Forest for Facial Feature Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10828 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9453999996185303 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Biometric Identification and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.724526047706604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6906633973121643 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6163377165794373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5597507357597351 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5418082475662231 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C52102323 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5407645106315613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1671968 |
| concepts[5].display_name | Pose |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5148903131484985 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C2779808786 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4783858060836792 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6664603 |
| concepts[7].display_name | Locality |
| concepts[8].id | https://openalex.org/C169258074 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47233906388282776 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[8].display_name | Random forest |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3600800037384033 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35146668553352356 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.22199848294258118 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19741681218147278 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.724526047706604 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6906633973121643 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.6163377165794373 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5597507357597351 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5418082475662231 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pose |
| keywords[5].score | 0.5407645106315613 |
| keywords[5].display_name | Pose |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.5148903131484985 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/locality |
| keywords[7].score | 0.4783858060836792 |
| keywords[7].display_name | Locality |
| keywords[8].id | https://openalex.org/keywords/random-forest |
| keywords[8].score | 0.47233906388282776 |
| keywords[8].display_name | Random forest |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.3600800037384033 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.35146668553352356 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.22199848294258118 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.19741681218147278 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.2991/ameii-15.2015.335 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://download.atlantis-press.com/article/22007.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics |
| locations[0].landing_page_url | https://doi.org/10.2991/ameii-15.2015.335 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103371450 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Liyuan Zhuo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| authorships[0].institutions[0].id | https://openalex.org/I16609230 |
| authorships[0].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liyuan Zhuo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| authorships[1].author.id | https://openalex.org/A5058108910 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Huawei Pan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| authorships[1].institutions[0].id | https://openalex.org/I16609230 |
| authorships[1].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huawei Pan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| authorships[2].author.id | https://openalex.org/A5038040471 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7428-5166 |
| authorships[2].author.display_name | Chunming Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| authorships[2].institutions[0].id | https://openalex.org/I16609230 |
| authorships[2].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hunan University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chunming Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Engineering, Hunan University, Changsha, 410082, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://download.atlantis-press.com/article/22007.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Head Pose-Based Conditional Regression Forest for Facial Feature Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W3193043704, https://openalex.org/W4386259002, https://openalex.org/W2889302474, https://openalex.org/W2048488252, https://openalex.org/W4289884158, https://openalex.org/W4288365262, https://openalex.org/W2940614149, https://openalex.org/W2787485953, https://openalex.org/W3217432596, https://openalex.org/W2172272445 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/ameii-15.2015.335 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://download.atlantis-press.com/article/22007.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.2991/ameii-15.2015.335 |
| primary_location.id | doi:10.2991/ameii-15.2015.335 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://download.atlantis-press.com/article/22007.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics |
| primary_location.landing_page_url | https://doi.org/10.2991/ameii-15.2015.335 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2038952578, https://openalex.org/W2082308025, https://openalex.org/W1573412753, https://openalex.org/W1643185111, https://openalex.org/W2395739386, https://openalex.org/W2116277445, https://openalex.org/W2135132101, https://openalex.org/W2168996682, https://openalex.org/W1782590233, https://openalex.org/W2360476515 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 7, 15, 22, 48 |
| abstract_inverted_index.as | 21 |
| abstract_inverted_index.by | 37, 44 |
| abstract_inverted_index.in | 78, 91 |
| abstract_inverted_index.is | 5, 42, 89 |
| abstract_inverted_index.of | 1, 28, 50, 62, 82 |
| abstract_inverted_index.to | 24, 73 |
| abstract_inverted_index.and | 31, 53, 64, 94 |
| abstract_inverted_index.for | 57 |
| abstract_inverted_index.it, | 66 |
| abstract_inverted_index.the | 12, 26, 33, 59, 75, 83, 92, 95 |
| abstract_inverted_index.head | 17, 38 |
| abstract_inverted_index.idea | 41 |
| abstract_inverted_index.kind | 49 |
| abstract_inverted_index.pose | 18, 63 |
| abstract_inverted_index.rate | 35 |
| abstract_inverted_index.then | 67 |
| abstract_inverted_index.this | 10 |
| abstract_inverted_index.used | 43 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.basic | 40 |
| abstract_inverted_index.label | 65 |
| abstract_inverted_index.still | 6 |
| abstract_inverted_index.author | 13 |
| abstract_inverted_index.caused | 36 |
| abstract_inverted_index.facial | 2, 85 |
| abstract_inverted_index.global | 60, 79 |
| abstract_inverted_index.method | 20 |
| abstract_inverted_index.paper, | 11 |
| abstract_inverted_index.points | 77 |
| abstract_inverted_index.recent | 99 |
| abstract_inverted_index.feature | 3, 76, 86 |
| abstract_inverted_index.getting | 58 |
| abstract_inverted_index.improve | 25 |
| abstract_inverted_index.missing | 34 |
| abstract_inverted_index.several | 98 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.utilize | 68 |
| abstract_inverted_index.forests, | 30 |
| abstract_inverted_index.identify | 74 |
| abstract_inverted_index.locality | 45 |
| abstract_inverted_index.manifold | 51 |
| abstract_inverted_index.methods. | 100 |
| abstract_inverted_index.proposed | 84 |
| abstract_inverted_index.proposes | 14 |
| abstract_inverted_index.(LPP+NLR) | 56 |
| abstract_inverted_index.algorithm | 88 |
| abstract_inverted_index.condition | 23 |
| abstract_inverted_index.decreases | 32 |
| abstract_inverted_index.detection | 4, 87 |
| abstract_inverted_index.learning, | 52 |
| abstract_inverted_index.nonlinear | 54 |
| abstract_inverted_index.precision | 16 |
| abstract_inverted_index.classifier | 72 |
| abstract_inverted_index.comparison | 96 |
| abstract_inverted_index.estimation | 19 |
| abstract_inverted_index.preserving | 46 |
| abstract_inverted_index.regression | 29, 55, 71 |
| abstract_inverted_index.challenging | 8 |
| abstract_inverted_index.conditional | 70 |
| abstract_inverted_index.experiments | 93 |
| abstract_inverted_index.illustrated | 90 |
| abstract_inverted_index.information | 61 |
| abstract_inverted_index.performance | 27 |
| abstract_inverted_index.projection, | 47 |
| abstract_inverted_index.research.In | 9 |
| abstract_inverted_index.Multi-angles | 0 |
| abstract_inverted_index.effectiveness | 81 |
| abstract_inverted_index.deflection.The | 39 |
| abstract_inverted_index.characteristics.The | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.04408287 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |