Healthcare Big Data Analysis with Artificial Neural Network for Cardiac Disease Prediction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13010163
The generation of a huge volume of structured, semi-structured and unstructured real-time health monitoring data and its storage in the form of electronic health records (EHRs) need to be processed and analyzed intelligently to provide timely healthcare. A big data analytic platform is an alternative to the traditional warehouse paradigms for the processing, analysis and storage of the tremendous volume of healthcare data. However, the manual analysis of these voluminous, multi-variate patients data is tedious and error-prone. Therefore, an intelligent solution method is highly essential to perform multiple correlation analyses for disease diagnosis and prediction. In this paper, first, a structural framework is proposed to process the huge volume of cardiological big data generated from the hospital and patients. Then, an intelligent analytical model for the cardiological big data analysis is proposed by combining the concept of artificial neural network (ANN) and particle swarm optimization (PSO) to predict the abnormalities in the cardiac health of a person. In the proposed cardiac disease prediction model, an extensive electrocardiogram (ECG) data analysis method is developed to identify the probable normal and abnormal cardiac feature points. Simulation results show the effects of a number of attributes for improving the accuracy of the cardiac disease prediction and data processing time in the cloud with an increase in the number of the cardiac patients.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13010163
- https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692
- OA Status
- gold
- Cited By
- 12
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390437214
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390437214Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13010163Digital Object Identifier
- Title
-
Healthcare Big Data Analysis with Artificial Neural Network for Cardiac Disease PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-29Full publication date if available
- Authors
-
Sulagna Mohapatra, Prasan Kumar Sahoo, Suvendu Kumar MohapatraList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13010163Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692Direct OA link when available
- Concepts
-
Big data, Artificial neural network, Computer science, Particle swarm optimization, Volume (thermodynamics), Data mining, Artificial intelligence, Process (computing), Machine learning, Operating system, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390437214 |
|---|---|
| doi | https://doi.org/10.3390/electronics13010163 |
| ids.doi | https://doi.org/10.3390/electronics13010163 |
| ids.openalex | https://openalex.org/W4390437214 |
| fwci | 6.36981983 |
| type | article |
| title | Healthcare Big Data Analysis with Artificial Neural Network for Cardiac Disease Prediction |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 163 |
| biblio.first_page | 163 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T11021 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7907440662384033 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7301883697509766 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6918922662734985 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C85617194 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6118085384368896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[3].display_name | Particle swarm optimization |
| concepts[4].id | https://openalex.org/C20556612 |
| concepts[4].level | 2 |
| concepts[4].score | 0.592468798160553 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4469374 |
| concepts[4].display_name | Volume (thermodynamics) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5760219693183899 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4951438009738922 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47599756717681885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42116397619247437 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.7907440662384033 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.7301883697509766 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6918922662734985 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[3].score | 0.6118085384368896 |
| keywords[3].display_name | Particle swarm optimization |
| keywords[4].id | https://openalex.org/keywords/volume |
| keywords[4].score | 0.592468798160553 |
| keywords[4].display_name | Volume (thermodynamics) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.5760219693183899 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4951438009738922 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.47599756717681885 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.42116397619247437 |
| keywords[8].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3390/electronics13010163 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13010163 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038406179 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3208-5024 |
| authorships[0].author.display_name | Sulagna Mohapatra |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I173093425 |
| authorships[0].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Chang Gung University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sulagna Mohapatra |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[1].author.id | https://openalex.org/A5043838453 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3496-1195 |
| authorships[1].author.display_name | Prasan Kumar Sahoo |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3020100970 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I173093425 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I3020100970 |
| authorships[1].institutions[0].ror | https://ror.org/02verss31 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I3020100970 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Chang Gung Memorial Hospital |
| authorships[1].institutions[1].id | https://openalex.org/I173093425 |
| authorships[1].institutions[1].ror | https://ror.org/00d80zx46 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I173093425 |
| authorships[1].institutions[1].country_code | TW |
| authorships[1].institutions[1].display_name | Chang Gung University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prasan Kumar Sahoo |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Guishan, Taoyuan 333423, Taiwan |
| authorships[2].author.id | https://openalex.org/A5083610334 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6512-3736 |
| authorships[2].author.display_name | Suvendu Kumar Mohapatra |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I173093425 |
| authorships[2].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | Chang Gung University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Suvendu Kumar Mohapatra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Information Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-30T00:00:00 |
| display_name | Healthcare Big Data Analysis with Artificial Neural Network for Cardiac Disease Prediction |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4390608645, https://openalex.org/W4247566972, https://openalex.org/W2960264696, https://openalex.org/W3090563135, https://openalex.org/W2497432351, https://openalex.org/W4206777497, https://openalex.org/W2910064364, https://openalex.org/W4255224757, https://openalex.org/W2499527417, https://openalex.org/W2218513093 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics13010163 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13010163 |
| primary_location.id | doi:10.3390/electronics13010163 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/13/1/163/pdf?version=1703946692 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13010163 |
| publication_date | 2023-12-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3207925783, https://openalex.org/W2603156040, https://openalex.org/W3118456059, https://openalex.org/W2013374182, https://openalex.org/W6759375981, https://openalex.org/W2980542546, https://openalex.org/W2986588121, https://openalex.org/W3134395396, https://openalex.org/W4282547510, https://openalex.org/W2991850581, https://openalex.org/W3033238362, https://openalex.org/W3197552172, https://openalex.org/W2802539413, https://openalex.org/W6796181687, https://openalex.org/W2571067114, https://openalex.org/W1997182427, https://openalex.org/W4200263042, https://openalex.org/W2790457091, https://openalex.org/W3136968978, https://openalex.org/W2978471372, https://openalex.org/W3005055935, https://openalex.org/W3096954277, https://openalex.org/W2999069903, https://openalex.org/W3034033080, https://openalex.org/W4225129458, https://openalex.org/W3021925134, https://openalex.org/W4206542300, https://openalex.org/W2946893635, https://openalex.org/W4294811214, https://openalex.org/W4225674205, https://openalex.org/W4362538029, https://openalex.org/W4366827026, https://openalex.org/W2186299612, https://openalex.org/W4285219596, https://openalex.org/W4205866273, https://openalex.org/W4386031279, https://openalex.org/W4210630286, https://openalex.org/W4287833982, https://openalex.org/W6809053150, https://openalex.org/W4229025854, https://openalex.org/W4226378822, https://openalex.org/W4313216306, https://openalex.org/W2411631905, https://openalex.org/W6783330766, https://openalex.org/W4200549244, https://openalex.org/W3089567202, https://openalex.org/W2914745067, https://openalex.org/W4252380047, https://openalex.org/W4213366238 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 37 |
| abstract_inverted_index.a | 3, 99, 155, 189 |
| abstract_inverted_index.In | 95, 157 |
| abstract_inverted_index.an | 43, 78, 120, 164, 210 |
| abstract_inverted_index.be | 28 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 18, 150, 206, 212 |
| abstract_inverted_index.is | 42, 73, 82, 102, 130, 171 |
| abstract_inverted_index.of | 2, 6, 21, 56, 60, 67, 109, 136, 154, 188, 191, 197, 215 |
| abstract_inverted_index.to | 27, 33, 45, 85, 104, 146, 173 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 9, 15, 30, 54, 75, 93, 117, 141, 178, 202 |
| abstract_inverted_index.big | 38, 111, 127 |
| abstract_inverted_index.for | 50, 90, 124, 193 |
| abstract_inverted_index.its | 16 |
| abstract_inverted_index.the | 19, 46, 51, 57, 64, 106, 115, 125, 134, 148, 151, 158, 175, 186, 195, 198, 207, 213, 216 |
| abstract_inverted_index.data | 14, 39, 72, 112, 128, 168, 203 |
| abstract_inverted_index.form | 20 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.huge | 4, 107 |
| abstract_inverted_index.need | 26 |
| abstract_inverted_index.show | 185 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.time | 205 |
| abstract_inverted_index.with | 209 |
| abstract_inverted_index.(ANN) | 140 |
| abstract_inverted_index.(ECG) | 167 |
| abstract_inverted_index.(PSO) | 145 |
| abstract_inverted_index.Then, | 119 |
| abstract_inverted_index.cloud | 208 |
| abstract_inverted_index.data. | 62 |
| abstract_inverted_index.model | 123 |
| abstract_inverted_index.swarm | 143 |
| abstract_inverted_index.these | 68 |
| abstract_inverted_index.(EHRs) | 25 |
| abstract_inverted_index.first, | 98 |
| abstract_inverted_index.health | 12, 23, 153 |
| abstract_inverted_index.highly | 83 |
| abstract_inverted_index.manual | 65 |
| abstract_inverted_index.method | 81, 170 |
| abstract_inverted_index.model, | 163 |
| abstract_inverted_index.neural | 138 |
| abstract_inverted_index.normal | 177 |
| abstract_inverted_index.number | 190, 214 |
| abstract_inverted_index.paper, | 97 |
| abstract_inverted_index.timely | 35 |
| abstract_inverted_index.volume | 5, 59, 108 |
| abstract_inverted_index.cardiac | 152, 160, 180, 199, 217 |
| abstract_inverted_index.concept | 135 |
| abstract_inverted_index.disease | 91, 161, 200 |
| abstract_inverted_index.effects | 187 |
| abstract_inverted_index.feature | 181 |
| abstract_inverted_index.network | 139 |
| abstract_inverted_index.perform | 86 |
| abstract_inverted_index.person. | 156 |
| abstract_inverted_index.points. | 182 |
| abstract_inverted_index.predict | 147 |
| abstract_inverted_index.process | 105 |
| abstract_inverted_index.provide | 34 |
| abstract_inverted_index.records | 24 |
| abstract_inverted_index.results | 184 |
| abstract_inverted_index.storage | 17, 55 |
| abstract_inverted_index.tedious | 74 |
| abstract_inverted_index.However, | 63 |
| abstract_inverted_index.abnormal | 179 |
| abstract_inverted_index.accuracy | 196 |
| abstract_inverted_index.analyses | 89 |
| abstract_inverted_index.analysis | 53, 66, 129, 169 |
| abstract_inverted_index.analytic | 40 |
| abstract_inverted_index.analyzed | 31 |
| abstract_inverted_index.hospital | 116 |
| abstract_inverted_index.identify | 174 |
| abstract_inverted_index.increase | 211 |
| abstract_inverted_index.multiple | 87 |
| abstract_inverted_index.particle | 142 |
| abstract_inverted_index.patients | 71 |
| abstract_inverted_index.platform | 41 |
| abstract_inverted_index.probable | 176 |
| abstract_inverted_index.proposed | 103, 131, 159 |
| abstract_inverted_index.solution | 80 |
| abstract_inverted_index.combining | 133 |
| abstract_inverted_index.developed | 172 |
| abstract_inverted_index.diagnosis | 92 |
| abstract_inverted_index.essential | 84 |
| abstract_inverted_index.extensive | 165 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.generated | 113 |
| abstract_inverted_index.improving | 194 |
| abstract_inverted_index.paradigms | 49 |
| abstract_inverted_index.patients. | 118, 218 |
| abstract_inverted_index.processed | 29 |
| abstract_inverted_index.real-time | 11 |
| abstract_inverted_index.warehouse | 48 |
| abstract_inverted_index.Simulation | 183 |
| abstract_inverted_index.Therefore, | 77 |
| abstract_inverted_index.analytical | 122 |
| abstract_inverted_index.artificial | 137 |
| abstract_inverted_index.attributes | 192 |
| abstract_inverted_index.electronic | 22 |
| abstract_inverted_index.generation | 1 |
| abstract_inverted_index.healthcare | 61 |
| abstract_inverted_index.monitoring | 13 |
| abstract_inverted_index.prediction | 162, 201 |
| abstract_inverted_index.processing | 204 |
| abstract_inverted_index.structural | 100 |
| abstract_inverted_index.tremendous | 58 |
| abstract_inverted_index.alternative | 44 |
| abstract_inverted_index.correlation | 88 |
| abstract_inverted_index.healthcare. | 36 |
| abstract_inverted_index.intelligent | 79, 121 |
| abstract_inverted_index.prediction. | 94 |
| abstract_inverted_index.processing, | 52 |
| abstract_inverted_index.structured, | 7 |
| abstract_inverted_index.traditional | 47 |
| abstract_inverted_index.voluminous, | 69 |
| abstract_inverted_index.error-prone. | 76 |
| abstract_inverted_index.optimization | 144 |
| abstract_inverted_index.unstructured | 10 |
| abstract_inverted_index.abnormalities | 149 |
| abstract_inverted_index.cardiological | 110, 126 |
| abstract_inverted_index.intelligently | 32 |
| abstract_inverted_index.multi-variate | 70 |
| abstract_inverted_index.semi-structured | 8 |
| abstract_inverted_index.electrocardiogram | 166 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5043838453 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I173093425, https://openalex.org/I3020100970 |
| citation_normalized_percentile.value | 0.95714764 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |