Heart Diseases Prediction based on Stacking Classifiers Model Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2023.01.140
Cardiovascular Diseases (CVDs), or heart diseases, are one of the top-ranking causes of death worldwide. About 1 in every 4 deaths are related to heart diseases, which are broadly classified as various types of abnormal heart conditions. However, diagnosis of CVDs is a time-consuming process in which data obtained from various clinical tests are manually analyzed. Therefore, new approaches for automating the detection of such irregularities in human heart conditions should be developed to provide medical practitioners with faster analysis via reducing the time of obtaining a diagnosis and enhancing results. Electronic Health Records(EHRs) are often utilized to discover useful data patterns that help improve the prediction of machine learning algorithms. Specifically, Machine Learning contributes significantly to solving issues like predictions in various domains, such as healthcare. Considering the abundance of available clinical data, there is a need to leverage such information for the betterment of humankind. In this work, a predictive model is proposed for heart disease prediction based on the stacking of various classifiers in two levels(Base level and Meta level). Various heterogeneous learners are combined to produce the strong model outcome. The model obtained 92% accuracy in prediction with a precision score of 92.6%, sensitivity of 92.6%, and specificity of 91%. The performance of the model was evaluated using various metrics, including accuracy, precision, recall, F1-scores, and area under the ROC curve values.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2023.01.140
- OA Status
- diamond
- Cited By
- 22
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320016082
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320016082Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2023.01.140Digital Object Identifier
- Title
-
Heart Diseases Prediction based on Stacking Classifiers ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Subasish Mohapatra, Sushree Maneesha, Prashanta Kumar Patra, Subhadarshini MohantyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2023.01.140Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2023.01.140Direct OA link when available
- Concepts
-
Computer science, Machine learning, Leverage (statistics), Artificial intelligence, Precision and recall, Data mining, Process (computing), Sensitivity (control systems), Predictive modelling, Heart disease, Medicine, Pathology, Electronic engineering, Engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 11, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320016082 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2023.01.140 |
| ids.doi | https://doi.org/10.1016/j.procs.2023.01.140 |
| ids.openalex | https://openalex.org/W4320016082 |
| fwci | 11.67800302 |
| type | article |
| title | Heart Diseases Prediction based on Stacking Classifiers Model |
| biblio.issue | |
| biblio.volume | 218 |
| biblio.last_page | 1630 |
| biblio.first_page | 1621 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9758999943733215 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9397000074386597 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8349922895431519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7393522262573242 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.72261643409729 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6744388341903687 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C81669768 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43779581785202026 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[4].display_name | Precision and recall |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4344540238380432 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4279373288154602 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C21200559 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42759162187576294 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[7].display_name | Sensitivity (control systems) |
| concepts[8].id | https://openalex.org/C45804977 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4190360903739929 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[8].display_name | Predictive modelling |
| concepts[9].id | https://openalex.org/C2780074459 |
| concepts[9].level | 2 |
| concepts[9].score | 0.416010320186615 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q389735 |
| concepts[9].display_name | Heart disease |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1269008219242096 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08805924654006958 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C24326235 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[12].display_name | Electronic engineering |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8349922895431519 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.7393522262573242 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.72261643409729 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6744388341903687 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/precision-and-recall |
| keywords[4].score | 0.43779581785202026 |
| keywords[4].display_name | Precision and recall |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4344540238380432 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.4279373288154602 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/sensitivity |
| keywords[7].score | 0.42759162187576294 |
| keywords[7].display_name | Sensitivity (control systems) |
| keywords[8].id | https://openalex.org/keywords/predictive-modelling |
| keywords[8].score | 0.4190360903739929 |
| keywords[8].display_name | Predictive modelling |
| keywords[9].id | https://openalex.org/keywords/heart-disease |
| keywords[9].score | 0.416010320186615 |
| keywords[9].display_name | Heart disease |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.1269008219242096 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.08805924654006958 |
| keywords[11].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2023.01.140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2023.01.140 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5039668480 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3440-7955 |
| authorships[0].author.display_name | Subasish Mohapatra |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13567498, https://openalex.org/I4400600923 |
| authorships[0].affiliations[0].raw_affiliation_string | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[0].institutions[0].id | https://openalex.org/I4400600923 |
| authorships[0].institutions[0].ror | https://ror.org/031jmyr19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4400600923 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Odisha University of Technology and Research |
| authorships[0].institutions[1].id | https://openalex.org/I13567498 |
| authorships[0].institutions[1].ror | https://ror.org/03tg0z446 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I13567498 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Odisha University of Agriculture and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Subasish Mohapatra |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[1].author.id | https://openalex.org/A5055606997 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sushree Maneesha |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I13567498, https://openalex.org/I4400600923 |
| authorships[1].affiliations[0].raw_affiliation_string | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[1].institutions[0].id | https://openalex.org/I4400600923 |
| authorships[1].institutions[0].ror | https://ror.org/031jmyr19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4400600923 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Odisha University of Technology and Research |
| authorships[1].institutions[1].id | https://openalex.org/I13567498 |
| authorships[1].institutions[1].ror | https://ror.org/03tg0z446 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I13567498 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Odisha University of Agriculture and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sushree Maneesha |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[2].author.id | https://openalex.org/A5047141684 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8165-3924 |
| authorships[2].author.display_name | Prashanta Kumar Patra |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I13567498, https://openalex.org/I4400600923 |
| authorships[2].affiliations[0].raw_affiliation_string | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[2].institutions[0].id | https://openalex.org/I4400600923 |
| authorships[2].institutions[0].ror | https://ror.org/031jmyr19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4400600923 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Odisha University of Technology and Research |
| authorships[2].institutions[1].id | https://openalex.org/I13567498 |
| authorships[2].institutions[1].ror | https://ror.org/03tg0z446 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I13567498 |
| authorships[2].institutions[1].country_code | IN |
| authorships[2].institutions[1].display_name | Odisha University of Agriculture and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Prashanta Kumar Patra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[3].author.id | https://openalex.org/A5032712991 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3556-4941 |
| authorships[3].author.display_name | Subhadarshini Mohanty |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I13567498, https://openalex.org/I4400600923 |
| authorships[3].affiliations[0].raw_affiliation_string | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| authorships[3].institutions[0].id | https://openalex.org/I4400600923 |
| authorships[3].institutions[0].ror | https://ror.org/031jmyr19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4400600923 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Odisha University of Technology and Research |
| authorships[3].institutions[1].id | https://openalex.org/I13567498 |
| authorships[3].institutions[1].ror | https://ror.org/03tg0z446 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I13567498 |
| authorships[3].institutions[1].country_code | IN |
| authorships[3].institutions[1].display_name | Odisha University of Agriculture and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Subhadarshini Mohanty |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Odisha University of Technology and Research (Govt.), Bhubaneswar-751029, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2023.01.140 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Heart Diseases Prediction based on Stacking Classifiers Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W3160244858, https://openalex.org/W4226243001, https://openalex.org/W4379208819, https://openalex.org/W4381956280, https://openalex.org/W4312354880, https://openalex.org/W4375840527, https://openalex.org/W4360764071, https://openalex.org/W4360994951, https://openalex.org/W4285205622, https://openalex.org/W3143658565 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2023.01.140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2023.01.140 |
| primary_location.id | doi:10.1016/j.procs.2023.01.140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2023.01.140 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6755400373, https://openalex.org/W3039358234, https://openalex.org/W1850308234, https://openalex.org/W6738492121, https://openalex.org/W6722278796, https://openalex.org/W6755331296, https://openalex.org/W3016531376, https://openalex.org/W6755061756, https://openalex.org/W6684306304, https://openalex.org/W28412257, https://openalex.org/W2411631905, https://openalex.org/W6755156563, https://openalex.org/W2795340517, https://openalex.org/W2954788759, https://openalex.org/W2966671057, https://openalex.org/W2746914601, https://openalex.org/W3015620176, https://openalex.org/W3102076866, https://openalex.org/W2198899446, https://openalex.org/W2949767632, https://openalex.org/W6774932778, https://openalex.org/W6791593640, https://openalex.org/W3040040993, https://openalex.org/W3008785957, https://openalex.org/W3035142875, https://openalex.org/W6798787728, https://openalex.org/W2911913928, https://openalex.org/W3185516026, https://openalex.org/W4365806527, https://openalex.org/W4234388575, https://openalex.org/W4247566079, https://openalex.org/W4252806237, https://openalex.org/W2620996152, https://openalex.org/W4242733110 |
| referenced_works_count | 34 |
| abstract_inverted_index.1 | 16 |
| abstract_inverted_index.4 | 19 |
| abstract_inverted_index.a | 42, 86, 136, 150, 192 |
| abstract_inverted_index.In | 147 |
| abstract_inverted_index.as | 30, 125 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.in | 17, 45, 66, 121, 166, 189 |
| abstract_inverted_index.is | 41, 135, 153 |
| abstract_inverted_index.of | 8, 12, 33, 39, 63, 84, 107, 130, 145, 163, 195, 198, 202, 206 |
| abstract_inverted_index.on | 160 |
| abstract_inverted_index.or | 3 |
| abstract_inverted_index.to | 23, 73, 97, 116, 138, 178 |
| abstract_inverted_index.92% | 187 |
| abstract_inverted_index.ROC | 223 |
| abstract_inverted_index.The | 184, 204 |
| abstract_inverted_index.and | 88, 170, 200, 219 |
| abstract_inverted_index.are | 6, 21, 27, 53, 94, 176 |
| abstract_inverted_index.for | 59, 142, 155 |
| abstract_inverted_index.new | 57 |
| abstract_inverted_index.one | 7 |
| abstract_inverted_index.the | 9, 61, 82, 105, 128, 143, 161, 180, 207, 222 |
| abstract_inverted_index.two | 167 |
| abstract_inverted_index.via | 80 |
| abstract_inverted_index.was | 209 |
| abstract_inverted_index.91%. | 203 |
| abstract_inverted_index.CVDs | 40 |
| abstract_inverted_index.Meta | 171 |
| abstract_inverted_index.area | 220 |
| abstract_inverted_index.data | 47, 100 |
| abstract_inverted_index.from | 49 |
| abstract_inverted_index.help | 103 |
| abstract_inverted_index.like | 119 |
| abstract_inverted_index.need | 137 |
| abstract_inverted_index.such | 64, 124, 140 |
| abstract_inverted_index.that | 102 |
| abstract_inverted_index.this | 148 |
| abstract_inverted_index.time | 83 |
| abstract_inverted_index.with | 77, 191 |
| abstract_inverted_index.About | 15 |
| abstract_inverted_index.based | 159 |
| abstract_inverted_index.curve | 224 |
| abstract_inverted_index.data, | 133 |
| abstract_inverted_index.death | 13 |
| abstract_inverted_index.every | 18 |
| abstract_inverted_index.heart | 4, 24, 35, 68, 156 |
| abstract_inverted_index.human | 67 |
| abstract_inverted_index.level | 169 |
| abstract_inverted_index.model | 152, 182, 185, 208 |
| abstract_inverted_index.often | 95 |
| abstract_inverted_index.score | 194 |
| abstract_inverted_index.tests | 52 |
| abstract_inverted_index.there | 134 |
| abstract_inverted_index.types | 32 |
| abstract_inverted_index.under | 221 |
| abstract_inverted_index.using | 211 |
| abstract_inverted_index.which | 26, 46 |
| abstract_inverted_index.work, | 149 |
| abstract_inverted_index.92.6%, | 196, 199 |
| abstract_inverted_index.Health | 92 |
| abstract_inverted_index.causes | 11 |
| abstract_inverted_index.deaths | 20 |
| abstract_inverted_index.faster | 78 |
| abstract_inverted_index.issues | 118 |
| abstract_inverted_index.should | 70 |
| abstract_inverted_index.strong | 181 |
| abstract_inverted_index.useful | 99 |
| abstract_inverted_index.(CVDs), | 2 |
| abstract_inverted_index.Machine | 112 |
| abstract_inverted_index.Various | 173 |
| abstract_inverted_index.broadly | 28 |
| abstract_inverted_index.disease | 157 |
| abstract_inverted_index.improve | 104 |
| abstract_inverted_index.level). | 172 |
| abstract_inverted_index.machine | 108 |
| abstract_inverted_index.medical | 75 |
| abstract_inverted_index.process | 44 |
| abstract_inverted_index.produce | 179 |
| abstract_inverted_index.provide | 74 |
| abstract_inverted_index.recall, | 217 |
| abstract_inverted_index.related | 22 |
| abstract_inverted_index.solving | 117 |
| abstract_inverted_index.values. | 225 |
| abstract_inverted_index.various | 31, 50, 122, 164, 212 |
| abstract_inverted_index.Diseases | 1 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.Learning | 113 |
| abstract_inverted_index.abnormal | 34 |
| abstract_inverted_index.accuracy | 188 |
| abstract_inverted_index.analysis | 79 |
| abstract_inverted_index.clinical | 51, 132 |
| abstract_inverted_index.combined | 177 |
| abstract_inverted_index.discover | 98 |
| abstract_inverted_index.domains, | 123 |
| abstract_inverted_index.learners | 175 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.leverage | 139 |
| abstract_inverted_index.manually | 54 |
| abstract_inverted_index.metrics, | 213 |
| abstract_inverted_index.obtained | 48, 186 |
| abstract_inverted_index.outcome. | 183 |
| abstract_inverted_index.patterns | 101 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.reducing | 81 |
| abstract_inverted_index.results. | 90 |
| abstract_inverted_index.stacking | 162 |
| abstract_inverted_index.utilized | 96 |
| abstract_inverted_index.abundance | 129 |
| abstract_inverted_index.accuracy, | 215 |
| abstract_inverted_index.analyzed. | 55 |
| abstract_inverted_index.available | 131 |
| abstract_inverted_index.detection | 62 |
| abstract_inverted_index.developed | 72 |
| abstract_inverted_index.diagnosis | 38, 87 |
| abstract_inverted_index.diseases, | 5, 25 |
| abstract_inverted_index.enhancing | 89 |
| abstract_inverted_index.evaluated | 210 |
| abstract_inverted_index.including | 214 |
| abstract_inverted_index.obtaining | 85 |
| abstract_inverted_index.precision | 193 |
| abstract_inverted_index.Electronic | 91 |
| abstract_inverted_index.F1-scores, | 218 |
| abstract_inverted_index.Therefore, | 56 |
| abstract_inverted_index.approaches | 58 |
| abstract_inverted_index.automating | 60 |
| abstract_inverted_index.betterment | 144 |
| abstract_inverted_index.classified | 29 |
| abstract_inverted_index.conditions | 69 |
| abstract_inverted_index.humankind. | 146 |
| abstract_inverted_index.precision, | 216 |
| abstract_inverted_index.prediction | 106, 158, 190 |
| abstract_inverted_index.predictive | 151 |
| abstract_inverted_index.worldwide. | 14 |
| abstract_inverted_index.Considering | 127 |
| abstract_inverted_index.algorithms. | 110 |
| abstract_inverted_index.classifiers | 165 |
| abstract_inverted_index.conditions. | 36 |
| abstract_inverted_index.contributes | 114 |
| abstract_inverted_index.healthcare. | 126 |
| abstract_inverted_index.information | 141 |
| abstract_inverted_index.levels(Base | 168 |
| abstract_inverted_index.performance | 205 |
| abstract_inverted_index.predictions | 120 |
| abstract_inverted_index.sensitivity | 197 |
| abstract_inverted_index.specificity | 201 |
| abstract_inverted_index.top-ranking | 10 |
| abstract_inverted_index.Records(EHRs) | 93 |
| abstract_inverted_index.Specifically, | 111 |
| abstract_inverted_index.heterogeneous | 174 |
| abstract_inverted_index.practitioners | 76 |
| abstract_inverted_index.significantly | 115 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.irregularities | 65 |
| abstract_inverted_index.time-consuming | 43 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.97616337 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |