Heart Segmentation From MRI Scans Using Convolutional Neural Network Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1911.09332
Heart is one of the vital organs of human body. A minor dysfunction of heart even for a short time interval can be fatal, therefore, efficient monitoring of its physiological state is essential for the patients with cardiovascular diseases. In the recent past, various computer assisted medical imaging systems have been proposed for the segmentation of the organ of interest. However, for the segmentation of heart using MRI, only few methods have been proposed each with its own merits and demerits. For further advancement in this area of research, we analyze automated heart segmentation methods for magnetic resonance images. The analysis are based on deep learning methods that processes a full MR scan in a slice by slice fashion to predict desired mask for heart region. We design two encoder decoder type fully convolutional neural network models
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1911.09332
- https://arxiv.org/pdf/1911.09332
- OA Status
- green
- Cited By
- 3
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2990162754
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2990162754Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1911.09332Digital Object Identifier
- Title
-
Heart Segmentation From MRI Scans Using Convolutional Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-21Full publication date if available
- Authors
-
Shakeel Muhammad Ibrahim, Muhammad Sohail Ibrahim, Muhammad Usman, Imran Naseem, Muhammad MoinuddinList of authors in order
- Landing page
-
https://arxiv.org/abs/1911.09332Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1911.09332Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1911.09332Direct OA link when available
- Concepts
-
Segmentation, Convolutional neural network, Computer science, Artificial intelligence, Magnetic resonance imaging, Encoder, Human heart, Deep learning, Pattern recognition (psychology), Computer vision, Artificial neural network, Medicine, Radiology, Cardiology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2990162754 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1911.09332 |
| ids.doi | https://doi.org/10.48550/arxiv.1911.09332 |
| ids.mag | 2990162754 |
| ids.openalex | https://openalex.org/W2990162754 |
| fwci | |
| type | preprint |
| title | Heart Segmentation From MRI Scans Using Convolutional Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9966999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8224087953567505 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7689020037651062 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.693602442741394 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6664191484451294 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C143409427 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5651944279670715 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[4].display_name | Magnetic resonance imaging |
| concepts[5].id | https://openalex.org/C118505674 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5371665954589844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[5].display_name | Encoder |
| concepts[6].id | https://openalex.org/C2983437453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48927661776542664 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1072 |
| concepts[6].display_name | Human heart |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48095694184303284 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.456596702337265 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4422948956489563 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42049315571784973 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2209671437740326 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19784900546073914 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C164705383 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1385340392589569 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[13].display_name | Cardiology |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.8224087953567505 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7689020037651062 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.693602442741394 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6664191484451294 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[4].score | 0.5651944279670715 |
| keywords[4].display_name | Magnetic resonance imaging |
| keywords[5].id | https://openalex.org/keywords/encoder |
| keywords[5].score | 0.5371665954589844 |
| keywords[5].display_name | Encoder |
| keywords[6].id | https://openalex.org/keywords/human-heart |
| keywords[6].score | 0.48927661776542664 |
| keywords[6].display_name | Human heart |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.48095694184303284 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.456596702337265 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4422948956489563 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.42049315571784973 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.2209671437740326 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.19784900546073914 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/cardiology |
| keywords[13].score | 0.1385340392589569 |
| keywords[13].display_name | Cardiology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1911.09332 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1911.09332 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1911.09332 |
| locations[1].id | doi:10.48550/arxiv.1911.09332 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1911.09332 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007401060 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shakeel Muhammad Ibrahim |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shakeel Muhammad Ibrahim |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081353572 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1387-0879 |
| authorships[1].author.display_name | Muhammad Sohail Ibrahim |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | (Zhejiang University) |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Sohail Ibrahim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (Zhejiang University) |
| authorships[2].author.id | https://openalex.org/A5075464273 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3393-5211 |
| authorships[2].author.display_name | Muhammad Usman |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Usman |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027850279 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4429-0049 |
| authorships[3].author.display_name | Imran Naseem |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I103583917 |
| authorships[3].affiliations[0].raw_affiliation_string | Karachi Institute of Economics and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I103583917 |
| authorships[3].institutions[0].ror | https://ror.org/02sdmkj94 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I103583917 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | Karachi Institute of Economics and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Imran Naseem |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Karachi Institute of Economics and Technology |
| authorships[4].author.id | https://openalex.org/A5057263563 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4735-0692 |
| authorships[4].author.display_name | Muhammad Moinuddin |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185163786 |
| authorships[4].affiliations[0].raw_affiliation_string | King Abdulaziz University; |
| authorships[4].institutions[0].id | https://openalex.org/I185163786 |
| authorships[4].institutions[0].ror | https://ror.org/02ma4wv74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185163786 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Abdulaziz University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Muhammad Moinuddin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | King Abdulaziz University; |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1911.09332 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Heart Segmentation From MRI Scans Using Convolutional Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9966999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W4375867731, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1911.09332 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1911.09332 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1911.09332 |
| primary_location.id | pmh:oai:arXiv.org:1911.09332 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1911.09332 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1911.09332 |
| publication_date | 2019-11-21 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1522301498, https://openalex.org/W2951830443, https://openalex.org/W2735537070, https://openalex.org/W2804319511, https://openalex.org/W2962885625, https://openalex.org/W2802546431, https://openalex.org/W2980668956, https://openalex.org/W3105469159, https://openalex.org/W845365781, https://openalex.org/W1901129140, https://openalex.org/W2524186126, https://openalex.org/W2885749203, https://openalex.org/W2620296437, https://openalex.org/W2620301279, https://openalex.org/W2919363974, https://openalex.org/W2531927115, https://openalex.org/W2559785631, https://openalex.org/W2073286211 |
| referenced_works_count | 18 |
| abstract_inverted_index.A | 10 |
| abstract_inverted_index.a | 17, 109, 114 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.MR | 111 |
| abstract_inverted_index.We | 126 |
| abstract_inverted_index.be | 22 |
| abstract_inverted_index.by | 116 |
| abstract_inverted_index.in | 84, 113 |
| abstract_inverted_index.is | 1, 31 |
| abstract_inverted_index.of | 3, 7, 13, 27, 55, 58, 64, 87 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.to | 119 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.For | 81 |
| abstract_inverted_index.The | 99 |
| abstract_inverted_index.and | 79 |
| abstract_inverted_index.are | 101 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.few | 69 |
| abstract_inverted_index.for | 16, 33, 52, 61, 95, 123 |
| abstract_inverted_index.its | 28, 76 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.own | 77 |
| abstract_inverted_index.the | 4, 34, 40, 53, 56, 62 |
| abstract_inverted_index.two | 128 |
| abstract_inverted_index.MRI, | 67 |
| abstract_inverted_index.area | 86 |
| abstract_inverted_index.been | 50, 72 |
| abstract_inverted_index.deep | 104 |
| abstract_inverted_index.each | 74 |
| abstract_inverted_index.even | 15 |
| abstract_inverted_index.full | 110 |
| abstract_inverted_index.have | 49, 71 |
| abstract_inverted_index.mask | 122 |
| abstract_inverted_index.only | 68 |
| abstract_inverted_index.scan | 112 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.time | 19 |
| abstract_inverted_index.type | 131 |
| abstract_inverted_index.with | 36, 75 |
| abstract_inverted_index.Heart | 0 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.body. | 9 |
| abstract_inverted_index.fully | 132 |
| abstract_inverted_index.heart | 14, 65, 92, 124 |
| abstract_inverted_index.human | 8 |
| abstract_inverted_index.minor | 11 |
| abstract_inverted_index.organ | 57 |
| abstract_inverted_index.past, | 42 |
| abstract_inverted_index.short | 18 |
| abstract_inverted_index.slice | 115, 117 |
| abstract_inverted_index.state | 30 |
| abstract_inverted_index.using | 66 |
| abstract_inverted_index.vital | 5 |
| abstract_inverted_index.design | 127 |
| abstract_inverted_index.fatal, | 23 |
| abstract_inverted_index.merits | 78 |
| abstract_inverted_index.models | 136 |
| abstract_inverted_index.neural | 134 |
| abstract_inverted_index.organs | 6 |
| abstract_inverted_index.recent | 41 |
| abstract_inverted_index.analyze | 90 |
| abstract_inverted_index.decoder | 130 |
| abstract_inverted_index.desired | 121 |
| abstract_inverted_index.encoder | 129 |
| abstract_inverted_index.fashion | 118 |
| abstract_inverted_index.further | 82 |
| abstract_inverted_index.images. | 98 |
| abstract_inverted_index.imaging | 47 |
| abstract_inverted_index.medical | 46 |
| abstract_inverted_index.methods | 70, 94, 106 |
| abstract_inverted_index.network | 135 |
| abstract_inverted_index.predict | 120 |
| abstract_inverted_index.region. | 125 |
| abstract_inverted_index.systems | 48 |
| abstract_inverted_index.various | 43 |
| abstract_inverted_index.However, | 60 |
| abstract_inverted_index.analysis | 100 |
| abstract_inverted_index.assisted | 45 |
| abstract_inverted_index.computer | 44 |
| abstract_inverted_index.interval | 20 |
| abstract_inverted_index.learning | 105 |
| abstract_inverted_index.magnetic | 96 |
| abstract_inverted_index.patients | 35 |
| abstract_inverted_index.proposed | 51, 73 |
| abstract_inverted_index.automated | 91 |
| abstract_inverted_index.demerits. | 80 |
| abstract_inverted_index.diseases. | 38 |
| abstract_inverted_index.efficient | 25 |
| abstract_inverted_index.essential | 32 |
| abstract_inverted_index.interest. | 59 |
| abstract_inverted_index.processes | 108 |
| abstract_inverted_index.research, | 88 |
| abstract_inverted_index.resonance | 97 |
| abstract_inverted_index.monitoring | 26 |
| abstract_inverted_index.therefore, | 24 |
| abstract_inverted_index.advancement | 83 |
| abstract_inverted_index.dysfunction | 12 |
| abstract_inverted_index.segmentation | 54, 63, 93 |
| abstract_inverted_index.convolutional | 133 |
| abstract_inverted_index.physiological | 29 |
| abstract_inverted_index.cardiovascular | 37 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |