Hesitant fuzzy clustering with convolutional spiking neural network for movie recommendations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856
The movie recommender system is one of the most influential and practical tools for aiding individuals in quickly selecting films to watch. Despite numerous academic efforts to employ recommender systems for various purposes, such as movie-watching and book-buying, many studies have overlooked user-specific movie recommendations. This paper introduces a novel approach for movie recommendations that combines the hesitant fuzzy clustering with a convolutional spiking neural network movie recommender system. The initial step involves acquiring input data from benchmark datasets like MovieLens 100K and MovieLens 1M. Further, content-based features are extracted from the dataset using ternary pattern and discrete wavelet transforms. After that hesitant fuzzy linguistic Bi-objective clustering (HFLBC) is applied for cluster selection based on the extracted features. Subsequently, a movie recommender scheme utilizing a convolutional spiking neural network is introduced to predict user film preferences. The efficiency of the proposed model is compared to existing methods such as multi-modal trust-dependent recommender scheme and graph-dependent hybrid recommendation scheme. The results show a significant improvement, with the proposed model achieving 13.79% and 16.47% higher accuracy than the existing methods. The findings highlight the potential of proposed system in enhancing the accuracy and personalization of movie recommendations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403020935
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403020935Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856Digital Object Identifier
- Title
-
Hesitant fuzzy clustering with convolutional spiking neural network for movie recommendationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-01Full publication date if available
- Authors
-
Vineet Shrivastava, Suresh KumarList of authors in order
- Landing page
-
https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856Direct OA link when available
- Concepts
-
Convolutional neural network, Cluster analysis, Computer science, Artificial intelligence, Fuzzy logic, Fuzzy clustering, Data mining, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403020935 |
|---|---|
| doi | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| ids.doi | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| ids.openalex | https://openalex.org/W4403020935 |
| fwci | 0.0 |
| type | article |
| title | Hesitant fuzzy clustering with convolutional spiking neural network for movie recommendations |
| biblio.issue | 3 |
| biblio.volume | 36 |
| biblio.last_page | 1849 |
| biblio.first_page | 1849 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7663000226020813 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8066881895065308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6104387044906616 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5987056493759155 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5172372460365295 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C58166 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4730597734451294 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[4].display_name | Fuzzy logic |
| concepts[5].id | https://openalex.org/C17212007 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4167303442955017 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[5].display_name | Fuzzy clustering |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.34835219383239746 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3205741047859192 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8066881895065308 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.6104387044906616 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5987056493759155 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5172372460365295 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[4].score | 0.4730597734451294 |
| keywords[4].display_name | Fuzzy logic |
| keywords[5].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[5].score | 0.4167303442955017 |
| keywords[5].display_name | Fuzzy clustering |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.34835219383239746 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3205741047859192 |
| keywords[7].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.11591/ijeecs.v36.i3.pp1849-1856 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764855249 |
| locations[0].source.issn | 2502-4752, 2502-4760 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2502-4752 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| locations[0].landing_page_url | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049037879 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9175-2555 |
| authorships[0].author.display_name | Vineet Shrivastava |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vineet Shrivastava |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084921480 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7774-7052 |
| authorships[1].author.display_name | Suresh Kumar |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Suresh Kumar |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-02T00:00:00 |
| display_name | Hesitant fuzzy clustering with convolutional spiking neural network for movie recommendations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7663000226020813 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2945382830, https://openalex.org/W4224807364, https://openalex.org/W2596632494, https://openalex.org/W2535986621, https://openalex.org/W1980197432, https://openalex.org/W2382432689, https://openalex.org/W2000612978, https://openalex.org/W4388110928, https://openalex.org/W1483228865, https://openalex.org/W4292434959 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijeecs.v36.i3.pp1849-1856 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764855249 |
| best_oa_location.source.issn | 2502-4752, 2502-4760 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2502-4752 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| primary_location.id | doi:10.11591/ijeecs.v36.i3.pp1849-1856 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764855249 |
| primary_location.source.issn | 2502-4752, 2502-4760 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2502-4752 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Indonesian Journal of Electrical Engineering and Computer Science |
| primary_location.landing_page_url | https://doi.org/10.11591/ijeecs.v36.i3.pp1849-1856 |
| publication_date | 2024-10-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 61, 119, 124, 161 |
| abstract_inverted_index.as | 34, 148 |
| abstract_inverted_index.in | 16, 186 |
| abstract_inverted_index.is | 4, 108, 129, 142 |
| abstract_inverted_index.of | 6, 138, 183, 192 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 20, 26, 131, 144 |
| abstract_inverted_index.1M. | 84 |
| abstract_inverted_index.The | 0, 69, 136, 158, 178 |
| abstract_inverted_index.and | 10, 36, 82, 96, 153, 170, 190 |
| abstract_inverted_index.are | 88 |
| abstract_inverted_index.for | 13, 30, 51, 110 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 7, 56, 91, 115, 139, 165, 175, 181, 188 |
| abstract_inverted_index.100K | 81 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.film | 134 |
| abstract_inverted_index.from | 76, 90 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.like | 79 |
| abstract_inverted_index.many | 38 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.show | 160 |
| abstract_inverted_index.step | 71 |
| abstract_inverted_index.such | 33, 147 |
| abstract_inverted_index.than | 174 |
| abstract_inverted_index.that | 54, 101 |
| abstract_inverted_index.user | 133 |
| abstract_inverted_index.with | 60, 164 |
| abstract_inverted_index.After | 100 |
| abstract_inverted_index.based | 113 |
| abstract_inverted_index.films | 19 |
| abstract_inverted_index.fuzzy | 58, 103 |
| abstract_inverted_index.input | 74 |
| abstract_inverted_index.model | 141, 167 |
| abstract_inverted_index.movie | 1, 43, 52, 66, 120, 193 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.paper | 46 |
| abstract_inverted_index.tools | 12 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.13.79% | 169 |
| abstract_inverted_index.16.47% | 171 |
| abstract_inverted_index.aiding | 14 |
| abstract_inverted_index.employ | 27 |
| abstract_inverted_index.higher | 172 |
| abstract_inverted_index.hybrid | 155 |
| abstract_inverted_index.neural | 64, 127 |
| abstract_inverted_index.scheme | 122, 152 |
| abstract_inverted_index.system | 3, 185 |
| abstract_inverted_index.watch. | 21 |
| abstract_inverted_index.(HFLBC) | 107 |
| abstract_inverted_index.Despite | 22 |
| abstract_inverted_index.applied | 109 |
| abstract_inverted_index.cluster | 111 |
| abstract_inverted_index.dataset | 92 |
| abstract_inverted_index.efforts | 25 |
| abstract_inverted_index.initial | 70 |
| abstract_inverted_index.methods | 146 |
| abstract_inverted_index.network | 65, 128 |
| abstract_inverted_index.pattern | 95 |
| abstract_inverted_index.predict | 132 |
| abstract_inverted_index.quickly | 17 |
| abstract_inverted_index.results | 159 |
| abstract_inverted_index.scheme. | 157 |
| abstract_inverted_index.spiking | 63, 126 |
| abstract_inverted_index.studies | 39 |
| abstract_inverted_index.system. | 68 |
| abstract_inverted_index.systems | 29 |
| abstract_inverted_index.ternary | 94 |
| abstract_inverted_index.various | 31 |
| abstract_inverted_index.wavelet | 98 |
| abstract_inverted_index.Further, | 85 |
| abstract_inverted_index.academic | 24 |
| abstract_inverted_index.accuracy | 173, 189 |
| abstract_inverted_index.approach | 50 |
| abstract_inverted_index.combines | 55 |
| abstract_inverted_index.compared | 143 |
| abstract_inverted_index.datasets | 78 |
| abstract_inverted_index.discrete | 97 |
| abstract_inverted_index.existing | 145, 176 |
| abstract_inverted_index.features | 87 |
| abstract_inverted_index.findings | 179 |
| abstract_inverted_index.hesitant | 57, 102 |
| abstract_inverted_index.involves | 72 |
| abstract_inverted_index.methods. | 177 |
| abstract_inverted_index.numerous | 23 |
| abstract_inverted_index.proposed | 140, 166, 184 |
| abstract_inverted_index.MovieLens | 80, 83 |
| abstract_inverted_index.achieving | 168 |
| abstract_inverted_index.acquiring | 73 |
| abstract_inverted_index.benchmark | 77 |
| abstract_inverted_index.enhancing | 187 |
| abstract_inverted_index.extracted | 89, 116 |
| abstract_inverted_index.features. | 117 |
| abstract_inverted_index.highlight | 180 |
| abstract_inverted_index.potential | 182 |
| abstract_inverted_index.practical | 11 |
| abstract_inverted_index.purposes, | 32 |
| abstract_inverted_index.selecting | 18 |
| abstract_inverted_index.selection | 112 |
| abstract_inverted_index.utilizing | 123 |
| abstract_inverted_index.clustering | 59, 106 |
| abstract_inverted_index.efficiency | 137 |
| abstract_inverted_index.introduced | 130 |
| abstract_inverted_index.introduces | 47 |
| abstract_inverted_index.linguistic | 104 |
| abstract_inverted_index.overlooked | 41 |
| abstract_inverted_index.individuals | 15 |
| abstract_inverted_index.influential | 9 |
| abstract_inverted_index.multi-modal | 149 |
| abstract_inverted_index.recommender | 2, 28, 67, 121, 151 |
| abstract_inverted_index.significant | 162 |
| abstract_inverted_index.transforms. | 99 |
| abstract_inverted_index.Bi-objective | 105 |
| abstract_inverted_index.book-buying, | 37 |
| abstract_inverted_index.improvement, | 163 |
| abstract_inverted_index.preferences. | 135 |
| abstract_inverted_index.Subsequently, | 118 |
| abstract_inverted_index.content-based | 86 |
| abstract_inverted_index.convolutional | 62, 125 |
| abstract_inverted_index.user-specific | 42 |
| abstract_inverted_index.movie-watching | 35 |
| abstract_inverted_index.recommendation | 156 |
| abstract_inverted_index.graph-dependent | 154 |
| abstract_inverted_index.personalization | 191 |
| abstract_inverted_index.recommendations | 53 |
| abstract_inverted_index.trust-dependent | 150 |
| abstract_inverted_index.recommendations. | 44, 194 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.17987327 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |