Heterogeneity-aware and communication-efficient distributed statistical inference Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1912.09623
In multicenter research, individual-level data are often protected against sharing across sites. To overcome the barrier of data sharing, many distributed algorithms, which only require sharing aggregated information, have been developed. The existing distributed algorithms usually assume the data are homogeneously distributed across sites. This assumption ignores the important fact that the data collected at different sites may come from various sub-populations and environments, which can lead to heterogeneity in the distribution of the data. Ignoring the heterogeneity may lead to erroneous statistical inference. In this paper, we propose distributed algorithms which account for the heterogeneous distributions by allowing site-specific nuisance parameters. The proposed methods extend the surrogate likelihood approach to the heterogeneous setting by applying a novel density ratio tilting method to the efficient score function. The proposed algorithms maintain the same communication cost as the existing communication-efficient algorithms. We establish a non-asymptotic risk bound for the proposed distributed estimator and its limiting distribution in the two-index asymptotic setting which allows both sample size per site and the number of sites to go to infinity. In addition, we show that the asymptotic variance of the estimator attains the Cramér-Rao lower bound when the number of sites is in rate smaller than the sample size at each site. Finally, we use simulation studies and a real data application to demonstrate the validity and feasibility of the proposed methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1912.09623
- https://arxiv.org/pdf/1912.09623
- OA Status
- green
- Cited By
- 9
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2996417372
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2996417372Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1912.09623Digital Object Identifier
- Title
-
Heterogeneity-aware and communication-efficient distributed statistical inferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-20Full publication date if available
- Authors
-
Rui Duan, Yang Ning, Yong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/1912.09623Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1912.09623Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1912.09623Direct OA link when available
- Concepts
-
Estimator, Computer science, Inference, Statistical inference, Variance (accounting), Sample size determination, Asymptotic distribution, Upper and lower bounds, Function (biology), Likelihood function, Algorithm, Data mining, Statistics, Mathematics, Estimation theory, Artificial intelligence, Biology, Mathematical analysis, Evolutionary biology, Business, AccountingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 4, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2996417372 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1912.09623 |
| ids.doi | https://doi.org/10.48550/arxiv.1912.09623 |
| ids.mag | 2996417372 |
| ids.openalex | https://openalex.org/W2996417372 |
| fwci | |
| type | preprint |
| title | Heterogeneity-aware and communication-efficient distributed statistical inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T10243 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Bayesian Inference |
| topics[2].id | https://openalex.org/T10845 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Advanced Causal Inference Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7135162353515625 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6476032137870789 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5994141101837158 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C134261354 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5873581767082214 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[3].display_name | Statistical inference |
| concepts[4].id | https://openalex.org/C196083921 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5430130958557129 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[4].display_name | Variance (accounting) |
| concepts[5].id | https://openalex.org/C129848803 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5109290480613708 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[5].display_name | Sample size determination |
| concepts[6].id | https://openalex.org/C65778772 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47571712732315063 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12345341 |
| concepts[6].display_name | Asymptotic distribution |
| concepts[7].id | https://openalex.org/C77553402 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4745410680770874 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[7].display_name | Upper and lower bounds |
| concepts[8].id | https://openalex.org/C14036430 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4153788685798645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[8].display_name | Function (biology) |
| concepts[9].id | https://openalex.org/C89106044 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41444259881973267 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q45284 |
| concepts[9].display_name | Likelihood function |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37429630756378174 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.346407413482666 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24284756183624268 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.23464375734329224 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C167928553 |
| concepts[14].level | 2 |
| concepts[14].score | 0.13374534249305725 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[14].display_name | Estimation theory |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.105653315782547 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C78458016 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[18].display_name | Evolutionary biology |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C121955636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[20].display_name | Accounting |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7135162353515625 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6476032137870789 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.5994141101837158 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/statistical-inference |
| keywords[3].score | 0.5873581767082214 |
| keywords[3].display_name | Statistical inference |
| keywords[4].id | https://openalex.org/keywords/variance |
| keywords[4].score | 0.5430130958557129 |
| keywords[4].display_name | Variance (accounting) |
| keywords[5].id | https://openalex.org/keywords/sample-size-determination |
| keywords[5].score | 0.5109290480613708 |
| keywords[5].display_name | Sample size determination |
| keywords[6].id | https://openalex.org/keywords/asymptotic-distribution |
| keywords[6].score | 0.47571712732315063 |
| keywords[6].display_name | Asymptotic distribution |
| keywords[7].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[7].score | 0.4745410680770874 |
| keywords[7].display_name | Upper and lower bounds |
| keywords[8].id | https://openalex.org/keywords/function |
| keywords[8].score | 0.4153788685798645 |
| keywords[8].display_name | Function (biology) |
| keywords[9].id | https://openalex.org/keywords/likelihood-function |
| keywords[9].score | 0.41444259881973267 |
| keywords[9].display_name | Likelihood function |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.37429630756378174 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.346407413482666 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.24284756183624268 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.23464375734329224 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/estimation-theory |
| keywords[14].score | 0.13374534249305725 |
| keywords[14].display_name | Estimation theory |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.105653315782547 |
| keywords[15].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1912.09623 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1912.09623 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1912.09623 |
| locations[1].id | doi:10.48550/arxiv.1912.09623 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1912.09623 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089178051 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9261-4864 |
| authorships[0].author.display_name | Rui Duan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, Harvard University, 677 Huntington Avenue, Boston, Massachusetts 02115, U.S.A |
| authorships[0].institutions[0].id | https://openalex.org/I136199984 |
| authorships[0].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Duan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, Harvard University, 677 Huntington Avenue, Boston, Massachusetts 02115, U.S.A |
| authorships[1].author.id | https://openalex.org/A5070406375 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6877-9231 |
| authorships[1].author.display_name | Yang Ning |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Data Science, Cornell University, Comstock Hall 1188, Ithaca, New York 14853, U.S.A |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang Ning |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics and Data Science, Cornell University, Comstock Hall 1188, Ithaca, New York 14853, U.S.A |
| authorships[2].author.id | https://openalex.org/A5100454438 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0835-0788 |
| authorships[2].author.display_name | Yong Chen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, U.S.A |
| authorships[2].institutions[0].id | https://openalex.org/I79576946 |
| authorships[2].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Pennsylvania |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yong Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, U.S.A |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1912.09623 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-12-26T00:00:00 |
| display_name | Heterogeneity-aware and communication-efficient distributed statistical inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W4293088233, https://openalex.org/W3152660226, https://openalex.org/W2496077116, https://openalex.org/W2001164387, https://openalex.org/W2900695351, https://openalex.org/W1986523067, https://openalex.org/W3082212156, https://openalex.org/W3121677332, https://openalex.org/W3123903523, https://openalex.org/W2063040110 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1912.09623 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1912.09623 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1912.09623 |
| primary_location.id | pmh:oai:arXiv.org:1912.09623 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1912.09623 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1912.09623 |
| publication_date | 2019-12-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2592748507, https://openalex.org/W2322461341, https://openalex.org/W2149860264, https://openalex.org/W2963187586, https://openalex.org/W2137342227, https://openalex.org/W1126991912, https://openalex.org/W2061326496, https://openalex.org/W2801571965, https://openalex.org/W2028344429, https://openalex.org/W2107328434, https://openalex.org/W2902433360, https://openalex.org/W2170281382, https://openalex.org/W2964291083, https://openalex.org/W2595198670, https://openalex.org/W2792478259, https://openalex.org/W2028995298, https://openalex.org/W3016458510, https://openalex.org/W2965497096, https://openalex.org/W2571425027, https://openalex.org/W2320723898, https://openalex.org/W1980612822, https://openalex.org/W2123764225, https://openalex.org/W2094514589, https://openalex.org/W2964231067, https://openalex.org/W2291895482, https://openalex.org/W2807787126, https://openalex.org/W2963126228, https://openalex.org/W2964166170, https://openalex.org/W2539133644, https://openalex.org/W2896103037 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 116, 142, 214 |
| abstract_inverted_index.In | 0, 84, 176 |
| abstract_inverted_index.To | 12 |
| abstract_inverted_index.We | 140 |
| abstract_inverted_index.as | 135 |
| abstract_inverted_index.at | 54, 205 |
| abstract_inverted_index.by | 97, 114 |
| abstract_inverted_index.go | 173 |
| abstract_inverted_index.in | 69, 155, 198 |
| abstract_inverted_index.is | 197 |
| abstract_inverted_index.of | 16, 72, 170, 184, 195, 224 |
| abstract_inverted_index.to | 67, 80, 110, 122, 172, 174, 218 |
| abstract_inverted_index.we | 87, 178, 209 |
| abstract_inverted_index.The | 31, 102, 127 |
| abstract_inverted_index.and | 62, 151, 167, 213, 222 |
| abstract_inverted_index.are | 5, 39 |
| abstract_inverted_index.can | 65 |
| abstract_inverted_index.for | 93, 146 |
| abstract_inverted_index.its | 152 |
| abstract_inverted_index.may | 57, 78 |
| abstract_inverted_index.per | 165 |
| abstract_inverted_index.the | 14, 37, 47, 51, 70, 73, 76, 94, 106, 111, 123, 131, 136, 147, 156, 168, 181, 185, 188, 193, 202, 220, 225 |
| abstract_inverted_index.use | 210 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.been | 29 |
| abstract_inverted_index.both | 162 |
| abstract_inverted_index.come | 58 |
| abstract_inverted_index.cost | 134 |
| abstract_inverted_index.data | 4, 17, 38, 52, 216 |
| abstract_inverted_index.each | 206 |
| abstract_inverted_index.fact | 49 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.lead | 66, 79 |
| abstract_inverted_index.many | 19 |
| abstract_inverted_index.only | 23 |
| abstract_inverted_index.rate | 199 |
| abstract_inverted_index.real | 215 |
| abstract_inverted_index.risk | 144 |
| abstract_inverted_index.same | 132 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.site | 166 |
| abstract_inverted_index.size | 164, 204 |
| abstract_inverted_index.than | 201 |
| abstract_inverted_index.that | 50, 180 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.when | 192 |
| abstract_inverted_index.bound | 145, 191 |
| abstract_inverted_index.data. | 74 |
| abstract_inverted_index.lower | 190 |
| abstract_inverted_index.novel | 117 |
| abstract_inverted_index.often | 6 |
| abstract_inverted_index.ratio | 119 |
| abstract_inverted_index.score | 125 |
| abstract_inverted_index.site. | 207 |
| abstract_inverted_index.sites | 56, 171, 196 |
| abstract_inverted_index.which | 22, 64, 91, 160 |
| abstract_inverted_index.across | 10, 42 |
| abstract_inverted_index.allows | 161 |
| abstract_inverted_index.assume | 36 |
| abstract_inverted_index.extend | 105 |
| abstract_inverted_index.method | 121 |
| abstract_inverted_index.number | 169, 194 |
| abstract_inverted_index.paper, | 86 |
| abstract_inverted_index.sample | 163, 203 |
| abstract_inverted_index.sites. | 11, 43 |
| abstract_inverted_index.account | 92 |
| abstract_inverted_index.against | 8 |
| abstract_inverted_index.attains | 187 |
| abstract_inverted_index.barrier | 15 |
| abstract_inverted_index.density | 118 |
| abstract_inverted_index.ignores | 46 |
| abstract_inverted_index.methods | 104 |
| abstract_inverted_index.propose | 88 |
| abstract_inverted_index.require | 24 |
| abstract_inverted_index.setting | 113, 159 |
| abstract_inverted_index.sharing | 9, 25 |
| abstract_inverted_index.smaller | 200 |
| abstract_inverted_index.studies | 212 |
| abstract_inverted_index.tilting | 120 |
| abstract_inverted_index.usually | 35 |
| abstract_inverted_index.various | 60 |
| abstract_inverted_index.Finally, | 208 |
| abstract_inverted_index.Ignoring | 75 |
| abstract_inverted_index.allowing | 98 |
| abstract_inverted_index.applying | 115 |
| abstract_inverted_index.approach | 109 |
| abstract_inverted_index.existing | 32, 137 |
| abstract_inverted_index.limiting | 153 |
| abstract_inverted_index.maintain | 130 |
| abstract_inverted_index.methods. | 227 |
| abstract_inverted_index.nuisance | 100 |
| abstract_inverted_index.overcome | 13 |
| abstract_inverted_index.proposed | 103, 128, 148, 226 |
| abstract_inverted_index.sharing, | 18 |
| abstract_inverted_index.validity | 221 |
| abstract_inverted_index.variance | 183 |
| abstract_inverted_index.addition, | 177 |
| abstract_inverted_index.collected | 53 |
| abstract_inverted_index.different | 55 |
| abstract_inverted_index.efficient | 124 |
| abstract_inverted_index.erroneous | 81 |
| abstract_inverted_index.establish | 141 |
| abstract_inverted_index.estimator | 150, 186 |
| abstract_inverted_index.function. | 126 |
| abstract_inverted_index.important | 48 |
| abstract_inverted_index.infinity. | 175 |
| abstract_inverted_index.protected | 7 |
| abstract_inverted_index.research, | 2 |
| abstract_inverted_index.surrogate | 107 |
| abstract_inverted_index.two-index | 157 |
| abstract_inverted_index.aggregated | 26 |
| abstract_inverted_index.algorithms | 34, 90, 129 |
| abstract_inverted_index.assumption | 45 |
| abstract_inverted_index.asymptotic | 158, 182 |
| abstract_inverted_index.developed. | 30 |
| abstract_inverted_index.inference. | 83 |
| abstract_inverted_index.likelihood | 108 |
| abstract_inverted_index.simulation | 211 |
| abstract_inverted_index.Cramér-Rao | 189 |
| abstract_inverted_index.algorithms, | 21 |
| abstract_inverted_index.algorithms. | 139 |
| abstract_inverted_index.application | 217 |
| abstract_inverted_index.demonstrate | 219 |
| abstract_inverted_index.distributed | 20, 33, 41, 89, 149 |
| abstract_inverted_index.feasibility | 223 |
| abstract_inverted_index.multicenter | 1 |
| abstract_inverted_index.parameters. | 101 |
| abstract_inverted_index.statistical | 82 |
| abstract_inverted_index.distribution | 71, 154 |
| abstract_inverted_index.information, | 27 |
| abstract_inverted_index.communication | 133 |
| abstract_inverted_index.distributions | 96 |
| abstract_inverted_index.environments, | 63 |
| abstract_inverted_index.heterogeneity | 68, 77 |
| abstract_inverted_index.heterogeneous | 95, 112 |
| abstract_inverted_index.homogeneously | 40 |
| abstract_inverted_index.site-specific | 99 |
| abstract_inverted_index.non-asymptotic | 143 |
| abstract_inverted_index.sub-populations | 61 |
| abstract_inverted_index.individual-level | 3 |
| abstract_inverted_index.communication-efficient | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |