Heterogeneous Driver Modeling and Corner Scenarios Sampling for Automated Vehicles Testing Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/8655514
Virtual simulation-based testing of autonomous vehicles (AVs) needs massive challenging corner cases to reach high testing accuracy. Current methods achieve this goal by finding testing scenarios with low sampling frequency in the empirical distribution. However, these methods neglect modeling heterogeneous driving behavior, which actually is crucial for finding corner cases. To fill this gap, we propose an interpretable and operable method for sampling corner cases. Firstly, we initialize a testing scenario and allocate testing tasks to AV. Then, to simulate the variability in driving behaviors, we design utility functions with several hyperparameters and generate aggressive, conservative, and normal driving strategies by adjusting hyperparameters. By changing the heterogeneous driving behavior of surrounding vehicles (SVs), we can sample the challenging corner cases in the scenario. Finally, we conduct a series of simulation experiments in a typical lane-changing scenario. The simulation results reveal that by adjusting the occurrence frequency of heterogeneous SVs in the testing scenario, more corner cases can be found in limited rounds of simulations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/8655514
- https://downloads.hindawi.com/journals/jat/2022/8655514.pdf
- OA Status
- gold
- Cited By
- 22
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280531543
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280531543Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/8655514Digital Object Identifier
- Title
-
Heterogeneous Driver Modeling and Corner Scenarios Sampling for Automated Vehicles TestingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-11Full publication date if available
- Authors
-
Jingwei Ge, Huile Xu, Jiawei Zhang, Yi Zhang, Danya Yao, Li LiList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/8655514Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/jat/2022/8655514.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/jat/2022/8655514.pdfDirect OA link when available
- Concepts
-
Hyperparameter, Computer science, Sampling (signal processing), Test case, Sample (material), Simulation, Driving simulator, Scenario testing, Machine learning, Artificial intelligence, Computer vision, Filter (signal processing), Chromatography, Regression analysis, Chemistry, Variety (cybernetics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 11, 2023: 7, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280531543 |
|---|---|
| doi | https://doi.org/10.1155/2022/8655514 |
| ids.doi | https://doi.org/10.1155/2022/8655514 |
| ids.openalex | https://openalex.org/W4280531543 |
| fwci | 2.19901741 |
| type | article |
| title | Heterogeneous Driver Modeling and Corner Scenarios Sampling for Automated Vehicles Testing |
| awards[0].id | https://openalex.org/G7384798246 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62133002 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G6310955659 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2021YFB2501200 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G8508485082 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62133002 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G1642729108 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2021YFB2501200 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 14 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10524 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Traffic control and management |
| topics[2].id | https://openalex.org/T11195 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Simulation Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | USD |
| apc_list.value_usd | 2400 |
| apc_paid.value | 2400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2400 |
| concepts[0].id | https://openalex.org/C8642999 |
| concepts[0].level | 2 |
| concepts[0].score | 0.803068220615387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4171168 |
| concepts[0].display_name | Hyperparameter |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6773391962051392 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6699823141098022 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C128942645 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4923964738845825 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1568346 |
| concepts[3].display_name | Test case |
| concepts[4].id | https://openalex.org/C198531522 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4907034635543823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[4].display_name | Sample (material) |
| concepts[5].id | https://openalex.org/C44154836 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4532519280910492 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[5].display_name | Simulation |
| concepts[6].id | https://openalex.org/C2780689630 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44730469584465027 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2081815 |
| concepts[6].display_name | Driving simulator |
| concepts[7].id | https://openalex.org/C80519477 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4317687749862671 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3532236 |
| concepts[7].display_name | Scenario testing |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.31969982385635376 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28031307458877563 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08222424983978271 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C106131492 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[11].display_name | Filter (signal processing) |
| concepts[12].id | https://openalex.org/C43617362 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[12].display_name | Chromatography |
| concepts[13].id | https://openalex.org/C152877465 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[13].display_name | Regression analysis |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C136197465 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[15].display_name | Variety (cybernetics) |
| keywords[0].id | https://openalex.org/keywords/hyperparameter |
| keywords[0].score | 0.803068220615387 |
| keywords[0].display_name | Hyperparameter |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6773391962051392 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.6699823141098022 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/test-case |
| keywords[3].score | 0.4923964738845825 |
| keywords[3].display_name | Test case |
| keywords[4].id | https://openalex.org/keywords/sample |
| keywords[4].score | 0.4907034635543823 |
| keywords[4].display_name | Sample (material) |
| keywords[5].id | https://openalex.org/keywords/simulation |
| keywords[5].score | 0.4532519280910492 |
| keywords[5].display_name | Simulation |
| keywords[6].id | https://openalex.org/keywords/driving-simulator |
| keywords[6].score | 0.44730469584465027 |
| keywords[6].display_name | Driving simulator |
| keywords[7].id | https://openalex.org/keywords/scenario-testing |
| keywords[7].score | 0.4317687749862671 |
| keywords[7].display_name | Scenario testing |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.31969982385635376 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.28031307458877563 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.08222424983978271 |
| keywords[10].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1155/2022/8655514 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S75054922 |
| locations[0].source.issn | 0197-6729, 2042-3195 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0197-6729 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Advanced Transportation |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/jat/2022/8655514.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Transportation |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/8655514 |
| locations[1].id | pmh:oai:doaj.org/article:90584fec3c654b4da61712f499a8ac47 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Advanced Transportation, Vol 2022 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/90584fec3c654b4da61712f499a8ac47 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5020672096 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2309-9739 |
| authorships[0].author.display_name | Jingwei Ge |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jingwei Ge |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[1].author.id | https://openalex.org/A5013491643 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6715-0247 |
| authorships[1].author.display_name | Huile Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[1].affiliations[0].raw_affiliation_string | National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
| authorships[1].affiliations[1].raw_affiliation_string | Momenta, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210112150 |
| authorships[1].institutions[1].ror | https://ror.org/022c3hy66 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Institute of Automation |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huile Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Momenta, Beijing, China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5100462845 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8634-1687 |
| authorships[2].author.display_name | Jiawei Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210114105 |
| authorships[2].affiliations[1].raw_affiliation_string | Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China |
| authorships[2].institutions[0].id | https://openalex.org/I99065089 |
| authorships[2].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tsinghua University |
| authorships[2].institutions[1].id | https://openalex.org/I4210114105 |
| authorships[2].institutions[1].ror | https://ror.org/02hhwwz98 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210114105, https://openalex.org/I95457486, https://openalex.org/I99065089 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Tsinghua–Berkeley Shenzhen Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiawei Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Automation, Tsinghua University, Beijing 100084, China, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China |
| authorships[3].author.id | https://openalex.org/A5100653787 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5526-866X |
| authorships[3].author.display_name | Yi Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114105 |
| authorships[3].affiliations[0].raw_affiliation_string | Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[3].affiliations[2].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].institutions[1].id | https://openalex.org/I4210114105 |
| authorships[3].institutions[1].ror | https://ror.org/02hhwwz98 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210114105, https://openalex.org/I95457486, https://openalex.org/I99065089 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Tsinghua–Berkeley Shenzhen Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yi Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Automation, Tsinghua University, Beijing 100084, China, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China |
| authorships[4].author.id | https://openalex.org/A5081663090 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5032-6322 |
| authorships[4].author.display_name | Danya Yao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Danya Yao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Automation, Tsinghua University, Beijing 100084, China, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China |
| authorships[5].author.id | https://openalex.org/A5114911316 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9428-1960 |
| authorships[5].author.display_name | Li Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Automation, Tsinghua University, Beijing 100084, China |
| authorships[5].institutions[0].id | https://openalex.org/I99065089 |
| authorships[5].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tsinghua University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li Li |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Automation, Tsinghua University, Beijing 100084, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/jat/2022/8655514.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Heterogeneous Driver Modeling and Corner Scenarios Sampling for Automated Vehicles Testing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W3116983179, https://openalex.org/W4309227563, https://openalex.org/W1567814420, https://openalex.org/W2947911386, https://openalex.org/W2125022076, https://openalex.org/W3185403326, https://openalex.org/W2964728696, https://openalex.org/W4288411761, https://openalex.org/W2347378298, https://openalex.org/W58987432 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2022/8655514 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S75054922 |
| best_oa_location.source.issn | 0197-6729, 2042-3195 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0197-6729 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Advanced Transportation |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/jat/2022/8655514.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Transportation |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/8655514 |
| primary_location.id | doi:10.1155/2022/8655514 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S75054922 |
| primary_location.source.issn | 0197-6729, 2042-3195 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0197-6729 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Advanced Transportation |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/jat/2022/8655514.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Transportation |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/8655514 |
| publication_date | 2022-05-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2930418732, https://openalex.org/W2952465413, https://openalex.org/W2943847575, https://openalex.org/W2797143217, https://openalex.org/W2948903291, https://openalex.org/W2896947111, https://openalex.org/W2923088732, https://openalex.org/W2896196835, https://openalex.org/W2395928740, https://openalex.org/W3032950445, https://openalex.org/W2438413413, https://openalex.org/W2511072509, https://openalex.org/W3127647470, https://openalex.org/W2796284132, https://openalex.org/W2133755639, https://openalex.org/W2063059576, https://openalex.org/W2003642326, https://openalex.org/W2990116160, https://openalex.org/W2734024016, https://openalex.org/W2145339207, https://openalex.org/W2890375627, https://openalex.org/W2149822156, https://openalex.org/W2014784329, https://openalex.org/W2806373172, https://openalex.org/W1982973737, https://openalex.org/W4254971466, https://openalex.org/W1995686532, https://openalex.org/W2198047635, https://openalex.org/W3061856215, https://openalex.org/W3009658025, https://openalex.org/W3207563209, https://openalex.org/W2772329503, https://openalex.org/W6703892686, https://openalex.org/W4294624294, https://openalex.org/W2338550901, https://openalex.org/W3100247915 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 68, 126, 132 |
| abstract_inverted_index.By | 103 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.be | 157 |
| abstract_inverted_index.by | 22, 100, 141 |
| abstract_inverted_index.in | 30, 82, 120, 131, 149, 159 |
| abstract_inverted_index.is | 44 |
| abstract_inverted_index.of | 3, 109, 128, 146, 162 |
| abstract_inverted_index.to | 12, 75, 78 |
| abstract_inverted_index.we | 54, 66, 85, 113, 124 |
| abstract_inverted_index.AV. | 76 |
| abstract_inverted_index.SVs | 148 |
| abstract_inverted_index.The | 136 |
| abstract_inverted_index.and | 58, 71, 92, 96 |
| abstract_inverted_index.can | 114, 156 |
| abstract_inverted_index.for | 46, 61 |
| abstract_inverted_index.low | 27 |
| abstract_inverted_index.the | 31, 80, 105, 116, 121, 143, 150 |
| abstract_inverted_index.fill | 51 |
| abstract_inverted_index.gap, | 53 |
| abstract_inverted_index.goal | 21 |
| abstract_inverted_index.high | 14 |
| abstract_inverted_index.more | 153 |
| abstract_inverted_index.that | 140 |
| abstract_inverted_index.this | 20, 52 |
| abstract_inverted_index.with | 26, 89 |
| abstract_inverted_index.(AVs) | 6 |
| abstract_inverted_index.Then, | 77 |
| abstract_inverted_index.cases | 11, 119, 155 |
| abstract_inverted_index.found | 158 |
| abstract_inverted_index.needs | 7 |
| abstract_inverted_index.reach | 13 |
| abstract_inverted_index.tasks | 74 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.(SVs), | 112 |
| abstract_inverted_index.cases. | 49, 64 |
| abstract_inverted_index.corner | 10, 48, 63, 118, 154 |
| abstract_inverted_index.design | 86 |
| abstract_inverted_index.method | 60 |
| abstract_inverted_index.normal | 97 |
| abstract_inverted_index.reveal | 139 |
| abstract_inverted_index.rounds | 161 |
| abstract_inverted_index.sample | 115 |
| abstract_inverted_index.series | 127 |
| abstract_inverted_index.Current | 17 |
| abstract_inverted_index.Virtual | 0 |
| abstract_inverted_index.achieve | 19 |
| abstract_inverted_index.conduct | 125 |
| abstract_inverted_index.crucial | 45 |
| abstract_inverted_index.driving | 40, 83, 98, 107 |
| abstract_inverted_index.finding | 23, 47 |
| abstract_inverted_index.limited | 160 |
| abstract_inverted_index.massive | 8 |
| abstract_inverted_index.methods | 18, 36 |
| abstract_inverted_index.neglect | 37 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.several | 90 |
| abstract_inverted_index.testing | 2, 15, 24, 69, 73, 151 |
| abstract_inverted_index.typical | 133 |
| abstract_inverted_index.utility | 87 |
| abstract_inverted_index.Finally, | 123 |
| abstract_inverted_index.Firstly, | 65 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.actually | 43 |
| abstract_inverted_index.allocate | 72 |
| abstract_inverted_index.behavior | 108 |
| abstract_inverted_index.changing | 104 |
| abstract_inverted_index.generate | 93 |
| abstract_inverted_index.modeling | 38 |
| abstract_inverted_index.operable | 59 |
| abstract_inverted_index.sampling | 28, 62 |
| abstract_inverted_index.scenario | 70 |
| abstract_inverted_index.simulate | 79 |
| abstract_inverted_index.vehicles | 5, 111 |
| abstract_inverted_index.accuracy. | 16 |
| abstract_inverted_index.adjusting | 101, 142 |
| abstract_inverted_index.behavior, | 41 |
| abstract_inverted_index.empirical | 32 |
| abstract_inverted_index.frequency | 29, 145 |
| abstract_inverted_index.functions | 88 |
| abstract_inverted_index.scenario, | 152 |
| abstract_inverted_index.scenario. | 122, 135 |
| abstract_inverted_index.scenarios | 25 |
| abstract_inverted_index.autonomous | 4 |
| abstract_inverted_index.behaviors, | 84 |
| abstract_inverted_index.initialize | 67 |
| abstract_inverted_index.occurrence | 144 |
| abstract_inverted_index.simulation | 129, 137 |
| abstract_inverted_index.strategies | 99 |
| abstract_inverted_index.aggressive, | 94 |
| abstract_inverted_index.challenging | 9, 117 |
| abstract_inverted_index.experiments | 130 |
| abstract_inverted_index.surrounding | 110 |
| abstract_inverted_index.variability | 81 |
| abstract_inverted_index.simulations. | 163 |
| abstract_inverted_index.conservative, | 95 |
| abstract_inverted_index.distribution. | 33 |
| abstract_inverted_index.heterogeneous | 39, 106, 147 |
| abstract_inverted_index.interpretable | 57 |
| abstract_inverted_index.lane-changing | 134 |
| abstract_inverted_index.hyperparameters | 91 |
| abstract_inverted_index.hyperparameters. | 102 |
| abstract_inverted_index.simulation-based | 1 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5114911316 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I99065089 |
| citation_normalized_percentile.value | 0.83867493 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |