Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.06432
Foundation models (FMs) adapt well to specific domains or tasks with fine-tuning, and federated learning (FL) enables the potential for privacy-preserving fine-tuning of the FMs with on-device local data. For federated fine-tuning of FMs, we consider the FMs with small to medium parameter sizes of single digit billion at maximum, referred to as on-device FMs (ODFMs) that can be deployed on devices for inference but can only be fine-tuned with parameter efficient methods. In our work, we tackle the data and system heterogeneity problem of federated fine-tuning of ODFMs by proposing a novel method using heterogeneous low-rank approximations (LoRAs), namely HetLoRA. First, we show that the naive approach of using homogeneous LoRA ranks across devices face a trade-off between overfitting and slow convergence, and thus propose HetLoRA, which allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules. By applying rank self-pruning locally and sparsity-weighted aggregation at the server, HetLoRA combines the advantages of high and low-rank LoRAs, which achieves improved convergence speed and final performance compared to homogeneous LoRA. Furthermore, HetLoRA offers enhanced computation efficiency compared to full fine-tuning, making it suitable for federated fine-tuning across heterogeneous devices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.06432
- https://arxiv.org/pdf/2401.06432
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390897567
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390897567Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.06432Digital Object Identifier
- Title
-
Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-12Full publication date if available
- Authors
-
Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, Gauri JoshiList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.06432Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.06432Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.06432Direct OA link when available
- Concepts
-
Computer science, Overfitting, Fine-tuning, Homogeneous, Pruning, Computation, Inference, Convergence (economics), Rank (graph theory), Distributed computing, Computer engineering, Artificial intelligence, Algorithm, Artificial neural network, Economics, Economic growth, Physics, Thermodynamics, Combinatorics, Biology, Agronomy, Quantum mechanics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390897567 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.06432 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.06432 |
| ids.openalex | https://openalex.org/W4390897567 |
| fwci | |
| type | preprint |
| title | Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9872000217437744 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.810480535030365 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C22019652 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6439402103424072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[1].display_name | Overfitting |
| concepts[2].id | https://openalex.org/C157524613 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6240371465682983 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2828883 |
| concepts[2].display_name | Fine-tuning |
| concepts[3].id | https://openalex.org/C66882249 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5621689558029175 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[3].display_name | Homogeneous |
| concepts[4].id | https://openalex.org/C108010975 |
| concepts[4].level | 2 |
| concepts[4].score | 0.547289252281189 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[4].display_name | Pruning |
| concepts[5].id | https://openalex.org/C45374587 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5283891558647156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[5].display_name | Computation |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5249959230422974 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4979071617126465 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C164226766 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4729839563369751 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[8].display_name | Rank (graph theory) |
| concepts[9].id | https://openalex.org/C120314980 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4167424142360687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[9].display_name | Distributed computing |
| concepts[10].id | https://openalex.org/C113775141 |
| concepts[10].level | 1 |
| concepts[10].score | 0.329401433467865 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[10].display_name | Computer engineering |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30458521842956543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2755963206291199 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1238929033279419 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C97355855 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[17].display_name | Thermodynamics |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C6557445 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[20].display_name | Agronomy |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C33923547 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[22].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.810480535030365 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/overfitting |
| keywords[1].score | 0.6439402103424072 |
| keywords[1].display_name | Overfitting |
| keywords[2].id | https://openalex.org/keywords/fine-tuning |
| keywords[2].score | 0.6240371465682983 |
| keywords[2].display_name | Fine-tuning |
| keywords[3].id | https://openalex.org/keywords/homogeneous |
| keywords[3].score | 0.5621689558029175 |
| keywords[3].display_name | Homogeneous |
| keywords[4].id | https://openalex.org/keywords/pruning |
| keywords[4].score | 0.547289252281189 |
| keywords[4].display_name | Pruning |
| keywords[5].id | https://openalex.org/keywords/computation |
| keywords[5].score | 0.5283891558647156 |
| keywords[5].display_name | Computation |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.5249959230422974 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.4979071617126465 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/rank |
| keywords[8].score | 0.4729839563369751 |
| keywords[8].display_name | Rank (graph theory) |
| keywords[9].id | https://openalex.org/keywords/distributed-computing |
| keywords[9].score | 0.4167424142360687 |
| keywords[9].display_name | Distributed computing |
| keywords[10].id | https://openalex.org/keywords/computer-engineering |
| keywords[10].score | 0.329401433467865 |
| keywords[10].display_name | Computer engineering |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.30458521842956543 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.2755963206291199 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.1238929033279419 |
| keywords[13].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.06432 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.06432 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.06432 |
| locations[1].id | doi:10.48550/arxiv.2401.06432 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.06432 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025202888 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6075-2712 |
| authorships[0].author.display_name | Yae Jee Cho |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cho, Yae Jee |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036831783 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9002-3788 |
| authorships[1].author.display_name | Luyang Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Luyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100413782 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0648-0327 |
| authorships[2].author.display_name | Zheng Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu, Zheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5093723171 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aldi Fahrezi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fahrezi, Aldi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067441201 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[4].author.display_name | Gauri Joshi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Joshi, Gauri |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.06432 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-16T00:00:00 |
| display_name | Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W1585770001, https://openalex.org/W2075873371, https://openalex.org/W4245210885, https://openalex.org/W84383711, https://openalex.org/W4242351093, https://openalex.org/W4302305417 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.06432 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.06432 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.06432 |
| primary_location.id | pmh:oai:arXiv.org:2401.06432 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.06432 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.06432 |
| publication_date | 2024-01-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 91, 116 |
| abstract_inverted_index.By | 143 |
| abstract_inverted_index.In | 73 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.at | 48, 151 |
| abstract_inverted_index.be | 58, 67 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.it | 186 |
| abstract_inverted_index.of | 22, 32, 44, 84, 87, 108, 158 |
| abstract_inverted_index.on | 60 |
| abstract_inverted_index.or | 8 |
| abstract_inverted_index.to | 5, 40, 51, 172, 182 |
| abstract_inverted_index.we | 34, 76, 102 |
| abstract_inverted_index.FMs | 24, 37, 54 |
| abstract_inverted_index.For | 29 |
| abstract_inverted_index.and | 12, 80, 120, 123, 134, 137, 148, 160, 168 |
| abstract_inverted_index.but | 64 |
| abstract_inverted_index.can | 57, 65 |
| abstract_inverted_index.for | 19, 62, 188 |
| abstract_inverted_index.our | 74 |
| abstract_inverted_index.the | 17, 23, 36, 78, 105, 152, 156 |
| abstract_inverted_index.(FL) | 15 |
| abstract_inverted_index.FMs, | 33 |
| abstract_inverted_index.LoRA | 111, 141 |
| abstract_inverted_index.data | 79 |
| abstract_inverted_index.face | 115 |
| abstract_inverted_index.full | 183 |
| abstract_inverted_index.high | 159 |
| abstract_inverted_index.only | 66 |
| abstract_inverted_index.rank | 145 |
| abstract_inverted_index.show | 103 |
| abstract_inverted_index.slow | 121 |
| abstract_inverted_index.that | 56, 104 |
| abstract_inverted_index.thus | 124 |
| abstract_inverted_index.well | 4 |
| abstract_inverted_index.with | 10, 25, 38, 69 |
| abstract_inverted_index.(FMs) | 2 |
| abstract_inverted_index.LoRA. | 174 |
| abstract_inverted_index.ODFMs | 88 |
| abstract_inverted_index.adapt | 3 |
| abstract_inverted_index.data. | 28 |
| abstract_inverted_index.digit | 46 |
| abstract_inverted_index.final | 169 |
| abstract_inverted_index.local | 27 |
| abstract_inverted_index.naive | 106 |
| abstract_inverted_index.novel | 92 |
| abstract_inverted_index.ranks | 112, 130 |
| abstract_inverted_index.sizes | 43 |
| abstract_inverted_index.small | 39 |
| abstract_inverted_index.speed | 167 |
| abstract_inverted_index.tasks | 9 |
| abstract_inverted_index.these | 139 |
| abstract_inverted_index.using | 94, 109 |
| abstract_inverted_index.which | 127, 163 |
| abstract_inverted_index.work, | 75 |
| abstract_inverted_index.First, | 101 |
| abstract_inverted_index.LoRAs, | 162 |
| abstract_inverted_index.across | 113, 131, 191 |
| abstract_inverted_index.allows | 128 |
| abstract_inverted_index.client | 132 |
| abstract_inverted_index.making | 185 |
| abstract_inverted_index.medium | 41 |
| abstract_inverted_index.method | 93 |
| abstract_inverted_index.models | 1 |
| abstract_inverted_index.namely | 99 |
| abstract_inverted_index.offers | 177 |
| abstract_inverted_index.single | 45 |
| abstract_inverted_index.system | 81 |
| abstract_inverted_index.tackle | 77 |
| abstract_inverted_index.(ODFMs) | 55 |
| abstract_inverted_index.HetLoRA | 154, 176 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.billion | 47 |
| abstract_inverted_index.devices | 61, 114, 133 |
| abstract_inverted_index.domains | 7 |
| abstract_inverted_index.enables | 16 |
| abstract_inverted_index.locally | 147 |
| abstract_inverted_index.problem | 83 |
| abstract_inverted_index.propose | 125 |
| abstract_inverted_index.server, | 153 |
| abstract_inverted_index.(LoRAs), | 98 |
| abstract_inverted_index.HetLoRA, | 126 |
| abstract_inverted_index.HetLoRA. | 100 |
| abstract_inverted_index.achieves | 164 |
| abstract_inverted_index.applying | 144 |
| abstract_inverted_index.approach | 107 |
| abstract_inverted_index.combines | 155 |
| abstract_inverted_index.compared | 171, 181 |
| abstract_inverted_index.consider | 35 |
| abstract_inverted_index.deployed | 59 |
| abstract_inverted_index.devices. | 193 |
| abstract_inverted_index.enhanced | 178 |
| abstract_inverted_index.improved | 165 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.low-rank | 96, 161 |
| abstract_inverted_index.maximum, | 49 |
| abstract_inverted_index.methods. | 72 |
| abstract_inverted_index.modules. | 142 |
| abstract_inverted_index.referred | 50 |
| abstract_inverted_index.specific | 6 |
| abstract_inverted_index.suitable | 187 |
| abstract_inverted_index.efficient | 71 |
| abstract_inverted_index.federated | 13, 30, 85, 189 |
| abstract_inverted_index.inference | 63 |
| abstract_inverted_index.on-device | 26, 53 |
| abstract_inverted_index.parameter | 42, 70 |
| abstract_inverted_index.potential | 18 |
| abstract_inverted_index.proposing | 90 |
| abstract_inverted_index.trade-off | 117 |
| abstract_inverted_index.Foundation | 0 |
| abstract_inverted_index.advantages | 157 |
| abstract_inverted_index.aggregates | 136 |
| abstract_inverted_index.efficiency | 180 |
| abstract_inverted_index.fine-tuned | 68 |
| abstract_inverted_index.aggregation | 150 |
| abstract_inverted_index.computation | 179 |
| abstract_inverted_index.convergence | 166 |
| abstract_inverted_index.distributes | 138 |
| abstract_inverted_index.efficiently | 135 |
| abstract_inverted_index.fine-tuning | 21, 31, 86, 190 |
| abstract_inverted_index.homogeneous | 110, 173 |
| abstract_inverted_index.overfitting | 119 |
| abstract_inverted_index.performance | 170 |
| abstract_inverted_index.Furthermore, | 175 |
| abstract_inverted_index.convergence, | 122 |
| abstract_inverted_index.fine-tuning, | 11, 184 |
| abstract_inverted_index.self-pruning | 146 |
| abstract_inverted_index.heterogeneity | 82 |
| abstract_inverted_index.heterogeneous | 95, 129, 140, 192 |
| abstract_inverted_index.approximations | 97 |
| abstract_inverted_index.sparsity-weighted | 149 |
| abstract_inverted_index.privacy-preserving | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |