Heterogenous Multi-Source Data Fusion Through Input Mapping and Latent Variable Gaussian Process Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.11268
Artificial intelligence and machine learning frameworks have served as computationally efficient mapping between inputs and outputs for engineering problems. These mappings have enabled optimization and analysis routines that have warranted superior designs, ingenious material systems and optimized manufacturing processes. A common occurrence in such modeling endeavors is the existence of multiple source of data, each differentiated by fidelity, operating conditions, experimental conditions, and more. Data fusion frameworks have opened the possibility of combining such differentiated sources into single unified models, enabling improved accuracy and knowledge transfer. However, these frameworks encounter limitations when the different sources are heterogeneous in nature, i.e., not sharing the same input parameter space. These heterogeneous input scenarios can occur when the domains differentiated by complexity, scale, and fidelity require different parametrizations. Towards addressing this void, a heterogeneous multi-source data fusion framework is proposed based on input mapping calibration (IMC) and latent variable Gaussian process (LVGP). In the first stage, the IMC algorithm is utilized to transform the heterogeneous input parameter spaces into a unified reference parameter space. In the second stage, a multi-source data fusion model enabled by LVGP is leveraged to build a single source-aware surrogate model on the transformed reference space. The proposed framework is demonstrated and analyzed on three engineering case studies (design of cantilever beam, design of ellipsoidal void and modeling properties of Ti6Al4V alloy). The results indicate that the proposed framework provides improved predictive accuracy over a single source model and transformed but source unaware model.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.11268
- https://arxiv.org/pdf/2407.11268
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401661473
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401661473Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.11268Digital Object Identifier
- Title
-
Heterogenous Multi-Source Data Fusion Through Input Mapping and Latent Variable Gaussian ProcessWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-15Full publication date if available
- Authors
-
Yigitcan Comlek, Sandipp Krishnan Ravi, Piyush Pandita, Sayan Ghosh, Liping Wang, Wei ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.11268Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.11268Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.11268Direct OA link when available
- Concepts
-
Latent variable, Gaussian process, Process (computing), Fusion, Computer science, Variable (mathematics), Latent variable model, Gaussian, Data mining, Artificial intelligence, Pattern recognition (psychology), Algorithm, Mathematics, Physics, Quantum mechanics, Linguistics, Mathematical analysis, Philosophy, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401661473 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.11268 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.11268 |
| ids.openalex | https://openalex.org/W4401661473 |
| fwci | |
| type | preprint |
| title | Heterogenous Multi-Source Data Fusion Through Input Mapping and Latent Variable Gaussian Process |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9528999924659729 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51167844 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7429454922676086 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[0].display_name | Latent variable |
| concepts[1].id | https://openalex.org/C61326573 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6118524670600891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[1].display_name | Gaussian process |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5688864588737488 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C158525013 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5595883131027222 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[3].display_name | Fusion |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5512635111808777 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C182365436 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5468941330909729 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[5].display_name | Variable (mathematics) |
| concepts[6].id | https://openalex.org/C65965080 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5078004002571106 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1806885 |
| concepts[6].display_name | Latent variable model |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4110153019428253 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40612250566482544 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3533514738082886 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3324137032032013 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.328821063041687 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.23659750819206238 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11484923958778381 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/latent-variable |
| keywords[0].score | 0.7429454922676086 |
| keywords[0].display_name | Latent variable |
| keywords[1].id | https://openalex.org/keywords/gaussian-process |
| keywords[1].score | 0.6118524670600891 |
| keywords[1].display_name | Gaussian process |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.5688864588737488 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/fusion |
| keywords[3].score | 0.5595883131027222 |
| keywords[3].display_name | Fusion |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5512635111808777 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/variable |
| keywords[5].score | 0.5468941330909729 |
| keywords[5].display_name | Variable (mathematics) |
| keywords[6].id | https://openalex.org/keywords/latent-variable-model |
| keywords[6].score | 0.5078004002571106 |
| keywords[6].display_name | Latent variable model |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.4110153019428253 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.40612250566482544 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3533514738082886 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3324137032032013 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.328821063041687 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.23659750819206238 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.11484923958778381 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.11268 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.11268 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.11268 |
| locations[1].id | pmh:oai:zenodo.org:14497949 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/other |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arXiv.2407.11268 |
| locations[2].id | doi:10.48550/arxiv.2407.11268 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2407.11268 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052256497 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3654-1576 |
| authorships[0].author.display_name | Yigitcan Comlek |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Comlek, Yigitcan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000237088 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8961-6797 |
| authorships[1].author.display_name | Sandipp Krishnan Ravi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ravi, Sandipp Krishnan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025062741 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2985-8794 |
| authorships[2].author.display_name | Piyush Pandita |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pandita, Piyush |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100670911 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8758-7657 |
| authorships[3].author.display_name | Sayan Ghosh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ghosh, Sayan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5038365025 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7765-2387 |
| authorships[4].author.display_name | Liping Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Liping |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100344439 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4653-7124 |
| authorships[5].author.display_name | Wei Chen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chen, Wei |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.11268 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Heterogenous Multi-Source Data Fusion Through Input Mapping and Latent Variable Gaussian Process |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9528999924659729 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2461917396, https://openalex.org/W2037497866, https://openalex.org/W4243467573, https://openalex.org/W1502435251, https://openalex.org/W62001224, https://openalex.org/W3032390039, https://openalex.org/W1584341211, https://openalex.org/W3122667150, https://openalex.org/W4393387622, https://openalex.org/W3145681568 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.11268 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.11268 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.11268 |
| primary_location.id | pmh:oai:arXiv.org:2407.11268 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.11268 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.11268 |
| publication_date | 2024-07-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 39 |
| abstract_inverted_index.a | 129, 166, 175, 187, 235 |
| abstract_inverted_index.In | 149, 171 |
| abstract_inverted_index.as | 8 |
| abstract_inverted_index.by | 56, 117, 181 |
| abstract_inverted_index.in | 42, 97 |
| abstract_inverted_index.is | 46, 135, 156, 183, 200 |
| abstract_inverted_index.of | 49, 52, 71, 210, 214, 220 |
| abstract_inverted_index.on | 138, 192, 204 |
| abstract_inverted_index.to | 158, 185 |
| abstract_inverted_index.IMC | 154 |
| abstract_inverted_index.The | 197, 223 |
| abstract_inverted_index.and | 2, 14, 24, 35, 62, 83, 120, 143, 202, 217, 239 |
| abstract_inverted_index.are | 95 |
| abstract_inverted_index.but | 241 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.for | 16 |
| abstract_inverted_index.not | 100 |
| abstract_inverted_index.the | 47, 69, 92, 102, 114, 150, 153, 160, 172, 193, 227 |
| abstract_inverted_index.Data | 64 |
| abstract_inverted_index.LVGP | 182 |
| abstract_inverted_index.case | 207 |
| abstract_inverted_index.data | 132, 177 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.have | 6, 21, 28, 67 |
| abstract_inverted_index.into | 76, 165 |
| abstract_inverted_index.over | 234 |
| abstract_inverted_index.same | 103 |
| abstract_inverted_index.such | 43, 73 |
| abstract_inverted_index.that | 27, 226 |
| abstract_inverted_index.this | 127 |
| abstract_inverted_index.void | 216 |
| abstract_inverted_index.when | 91, 113 |
| abstract_inverted_index.(IMC) | 142 |
| abstract_inverted_index.These | 19, 107 |
| abstract_inverted_index.based | 137 |
| abstract_inverted_index.beam, | 212 |
| abstract_inverted_index.build | 186 |
| abstract_inverted_index.data, | 53 |
| abstract_inverted_index.first | 151 |
| abstract_inverted_index.i.e., | 99 |
| abstract_inverted_index.input | 104, 109, 139, 162 |
| abstract_inverted_index.model | 179, 191, 238 |
| abstract_inverted_index.more. | 63 |
| abstract_inverted_index.occur | 112 |
| abstract_inverted_index.these | 87 |
| abstract_inverted_index.three | 205 |
| abstract_inverted_index.void, | 128 |
| abstract_inverted_index.common | 40 |
| abstract_inverted_index.design | 213 |
| abstract_inverted_index.fusion | 65, 133, 178 |
| abstract_inverted_index.inputs | 13 |
| abstract_inverted_index.latent | 144 |
| abstract_inverted_index.model. | 244 |
| abstract_inverted_index.opened | 68 |
| abstract_inverted_index.scale, | 119 |
| abstract_inverted_index.second | 173 |
| abstract_inverted_index.served | 7 |
| abstract_inverted_index.single | 77, 188, 236 |
| abstract_inverted_index.source | 51, 237, 242 |
| abstract_inverted_index.space. | 106, 170, 196 |
| abstract_inverted_index.spaces | 164 |
| abstract_inverted_index.stage, | 152, 174 |
| abstract_inverted_index.(LVGP). | 148 |
| abstract_inverted_index.(design | 209 |
| abstract_inverted_index.Ti6Al4V | 221 |
| abstract_inverted_index.Towards | 125 |
| abstract_inverted_index.alloy). | 222 |
| abstract_inverted_index.between | 12 |
| abstract_inverted_index.domains | 115 |
| abstract_inverted_index.enabled | 22, 180 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.mapping | 11, 140 |
| abstract_inverted_index.models, | 79 |
| abstract_inverted_index.nature, | 98 |
| abstract_inverted_index.outputs | 15 |
| abstract_inverted_index.process | 147 |
| abstract_inverted_index.require | 122 |
| abstract_inverted_index.results | 224 |
| abstract_inverted_index.sharing | 101 |
| abstract_inverted_index.sources | 75, 94 |
| abstract_inverted_index.studies | 208 |
| abstract_inverted_index.systems | 34 |
| abstract_inverted_index.unaware | 243 |
| abstract_inverted_index.unified | 78, 167 |
| abstract_inverted_index.Gaussian | 146 |
| abstract_inverted_index.However, | 86 |
| abstract_inverted_index.accuracy | 82, 233 |
| abstract_inverted_index.analysis | 25 |
| abstract_inverted_index.analyzed | 203 |
| abstract_inverted_index.designs, | 31 |
| abstract_inverted_index.enabling | 80 |
| abstract_inverted_index.fidelity | 121 |
| abstract_inverted_index.improved | 81, 231 |
| abstract_inverted_index.indicate | 225 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.mappings | 20 |
| abstract_inverted_index.material | 33 |
| abstract_inverted_index.modeling | 44, 218 |
| abstract_inverted_index.multiple | 50 |
| abstract_inverted_index.proposed | 136, 198, 228 |
| abstract_inverted_index.provides | 230 |
| abstract_inverted_index.routines | 26 |
| abstract_inverted_index.superior | 30 |
| abstract_inverted_index.utilized | 157 |
| abstract_inverted_index.variable | 145 |
| abstract_inverted_index.algorithm | 155 |
| abstract_inverted_index.combining | 72 |
| abstract_inverted_index.different | 93, 123 |
| abstract_inverted_index.efficient | 10 |
| abstract_inverted_index.encounter | 89 |
| abstract_inverted_index.endeavors | 45 |
| abstract_inverted_index.existence | 48 |
| abstract_inverted_index.fidelity, | 57 |
| abstract_inverted_index.framework | 134, 199, 229 |
| abstract_inverted_index.ingenious | 32 |
| abstract_inverted_index.knowledge | 84 |
| abstract_inverted_index.leveraged | 184 |
| abstract_inverted_index.operating | 58 |
| abstract_inverted_index.optimized | 36 |
| abstract_inverted_index.parameter | 105, 163, 169 |
| abstract_inverted_index.problems. | 18 |
| abstract_inverted_index.reference | 168, 195 |
| abstract_inverted_index.scenarios | 110 |
| abstract_inverted_index.surrogate | 190 |
| abstract_inverted_index.transfer. | 85 |
| abstract_inverted_index.transform | 159 |
| abstract_inverted_index.warranted | 29 |
| abstract_inverted_index.Artificial | 0 |
| abstract_inverted_index.addressing | 126 |
| abstract_inverted_index.cantilever | 211 |
| abstract_inverted_index.frameworks | 5, 66, 88 |
| abstract_inverted_index.occurrence | 41 |
| abstract_inverted_index.predictive | 232 |
| abstract_inverted_index.processes. | 38 |
| abstract_inverted_index.properties | 219 |
| abstract_inverted_index.calibration | 141 |
| abstract_inverted_index.complexity, | 118 |
| abstract_inverted_index.conditions, | 59, 61 |
| abstract_inverted_index.ellipsoidal | 215 |
| abstract_inverted_index.engineering | 17, 206 |
| abstract_inverted_index.limitations | 90 |
| abstract_inverted_index.possibility | 70 |
| abstract_inverted_index.transformed | 194, 240 |
| abstract_inverted_index.demonstrated | 201 |
| abstract_inverted_index.experimental | 60 |
| abstract_inverted_index.intelligence | 1 |
| abstract_inverted_index.multi-source | 131, 176 |
| abstract_inverted_index.optimization | 23 |
| abstract_inverted_index.source-aware | 189 |
| abstract_inverted_index.heterogeneous | 96, 108, 130, 161 |
| abstract_inverted_index.manufacturing | 37 |
| abstract_inverted_index.differentiated | 55, 74, 116 |
| abstract_inverted_index.computationally | 9 |
| abstract_inverted_index.parametrizations. | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |