Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.12491
Perception is essential for autonomous driving system. Recent approaches based on Bird's-eye-view (BEV) and deep learning have made significant progress. However, there exists challenging issues including lengthy development cycles, poor reusability, and complex sensor setups in perception algorithm development process. To tackle the above challenges, this paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface, enabling swift construction of customized models. We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes. Moreover, we present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models. Extensive experimental results on the Nuscenes dataset demonstrate that our approach renders significant improvement over the traditional training scheme.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.12491
- https://arxiv.org/pdf/2407.12491
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402345853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402345853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.12491Digital Object Identifier
- Title
-
Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous DrivingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-17Full publication date if available
- Authors
-
Yuqi Dai, Jian Sun, Shengbo Eben Li, Qing Xu, Jianqiang Wang, Lei He, Keqiang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.12491Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.12491Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.12491Direct OA link when available
- Concepts
-
Perception, Psychology, Cognitive psychology, Computer science, Human–computer interaction, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402345853 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.12491 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.12491 |
| ids.openalex | https://openalex.org/W4402345853 |
| fwci | |
| type | preprint |
| title | Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9527999758720398 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9381999969482422 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C26760741 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7324739694595337 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[0].display_name | Perception |
| concepts[1].id | https://openalex.org/C15744967 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4765618145465851 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[1].display_name | Psychology |
| concepts[2].id | https://openalex.org/C180747234 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4048483967781067 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[2].display_name | Cognitive psychology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4047815501689911 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3469729423522949 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C169760540 |
| concepts[5].level | 1 |
| concepts[5].score | 0.11202087998390198 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[5].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/perception |
| keywords[0].score | 0.7324739694595337 |
| keywords[0].display_name | Perception |
| keywords[1].id | https://openalex.org/keywords/psychology |
| keywords[1].score | 0.4765618145465851 |
| keywords[1].display_name | Psychology |
| keywords[2].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[2].score | 0.4048483967781067 |
| keywords[2].display_name | Cognitive psychology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4047815501689911 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.3469729423522949 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/neuroscience |
| keywords[5].score | 0.11202087998390198 |
| keywords[5].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.12491 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.12491 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.12491 |
| locations[1].id | doi:10.48550/arxiv.2407.12491 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.12491 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5050656423 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-3581-7639 |
| authorships[0].author.display_name | Yuqi Dai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dai, Yuqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062319704 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5031-4938 |
| authorships[1].author.display_name | Jian Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sun, Jian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100747108 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4923-3633 |
| authorships[2].author.display_name | Shengbo Eben Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Shengbo Eben |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101624124 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9804-3222 |
| authorships[3].author.display_name | Qing Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Qing |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100436368 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4363-6108 |
| authorships[4].author.display_name | Jianqiang Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Jianqiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109760529 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Lei He |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | He, Lei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5031855986 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9333-7416 |
| authorships[6].author.display_name | Keqiang Li |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Li, Keqiang |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.12491 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9527999758720398 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W2087303720 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.12491 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.12491 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.12491 |
| primary_location.id | pmh:oai:arXiv.org:2407.12491 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.12491 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.12491 |
| publication_date | 2024-07-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 48, 57, 92 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 73 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 59, 70, 104 |
| abstract_inverted_index.on | 10, 110 |
| abstract_inverted_index.to | 55, 78 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.BEV | 51 |
| abstract_inverted_index.and | 13, 31, 63, 85, 101 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.our | 116 |
| abstract_inverted_index.the | 42, 75, 111, 122 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.made | 17 |
| abstract_inverted_index.over | 121 |
| abstract_inverted_index.poor | 29 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.(BEV) | 12 |
| abstract_inverted_index.(MML) | 95 |
| abstract_inverted_index.above | 43 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.large | 81 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.paper | 46 |
| abstract_inverted_index.scale | 82 |
| abstract_inverted_index.swift | 68 |
| abstract_inverted_index.there | 21 |
| abstract_inverted_index.Recent | 7 |
| abstract_inverted_index.aiming | 54 |
| abstract_inverted_index.exists | 22 |
| abstract_inverted_index.issues | 24 |
| abstract_inverted_index.public | 83 |
| abstract_inverted_index.sensor | 33 |
| abstract_inverted_index.setups | 34 |
| abstract_inverted_index.tackle | 41 |
| abstract_inverted_index.complex | 32 |
| abstract_inverted_index.conduct | 74 |
| abstract_inverted_index.cycles, | 28 |
| abstract_inverted_index.dataset | 113 |
| abstract_inverted_index.driving | 5 |
| abstract_inverted_index.lengthy | 26 |
| abstract_inverted_index.library | 58 |
| abstract_inverted_index.models. | 72, 106 |
| abstract_inverted_index.modules | 62 |
| abstract_inverted_index.present | 91 |
| abstract_inverted_index.provide | 56 |
| abstract_inverted_index.renders | 118 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.scheme. | 125 |
| abstract_inverted_index.system. | 6 |
| abstract_inverted_index.through | 99 |
| abstract_inverted_index.utilize | 80 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Learning | 94 |
| abstract_inverted_index.Nuscenes | 112 |
| abstract_inverted_index.approach | 117 |
| abstract_inverted_index.datasets | 84 |
| abstract_inverted_index.enabling | 67 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.multiple | 105 |
| abstract_inverted_index.process. | 39 |
| abstract_inverted_index.proposes | 47 |
| abstract_inverted_index.strategy | 77 |
| abstract_inverted_index.training | 103, 124 |
| abstract_inverted_index.Extensive | 107 |
| abstract_inverted_index.Moreover, | 89 |
| abstract_inverted_index.algorithm | 37 |
| abstract_inverted_index.approach, | 96 |
| abstract_inverted_index.enhancing | 97 |
| abstract_inverted_index.essential | 2 |
| abstract_inverted_index.graphical | 65 |
| abstract_inverted_index.including | 25 |
| abstract_inverted_index.iterative | 102 |
| abstract_inverted_index.paradigm, | 53 |
| abstract_inverted_index.progress. | 19 |
| abstract_inverted_index.Perception | 0 |
| abstract_inverted_index.approaches | 8 |
| abstract_inverted_index.autonomous | 4 |
| abstract_inverted_index.customized | 71 |
| abstract_inverted_index.interface, | 66 |
| abstract_inverted_index.perception | 36, 52, 61 |
| abstract_inverted_index.processes. | 88 |
| abstract_inverted_index.streamline | 86 |
| abstract_inverted_index.challenges, | 44 |
| abstract_inverted_index.challenging | 23 |
| abstract_inverted_index.demonstrate | 114 |
| abstract_inverted_index.development | 27, 38, 87 |
| abstract_inverted_index.effectively | 79 |
| abstract_inverted_index.fundamental | 60 |
| abstract_inverted_index.improvement | 120 |
| abstract_inverted_index.performance | 98 |
| abstract_inverted_index.significant | 18, 119 |
| abstract_inverted_index.synergistic | 100 |
| abstract_inverted_index.traditional | 123 |
| abstract_inverted_index.Multi-Module | 93 |
| abstract_inverted_index.construction | 69 |
| abstract_inverted_index.experimental | 108 |
| abstract_inverted_index.hierarchical | 50 |
| abstract_inverted_index.reusability, | 30 |
| abstract_inverted_index.user-friendly | 64 |
| abstract_inverted_index.Bird's-eye-view | 11 |
| abstract_inverted_index.Pretrain-Finetune | 76 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |