Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/info16070532
Epileptic seizure detection and classification from EEG recordings faces significant challenges due to extreme class imbalance. Analysis of the Temple University Hospital Seizure (TUSZ) dataset reveals imbalance ratios of 150:1 between common and rare seizure types, with high temporal heterogeneity (seizure durations of 1–1638 s). We propose a cascaded deep learning architecture with two specialized CNNs: a binary detector followed by a multi-class classifier. This approach decomposes the classification problem, reducing the maximum imbalance from 150:1 to manageable levels (9:1 binary, 5:1 type). The architecture implements a high-confidence filtering mechanism (threshold = 0.9), creating a 99.5% pure dataset for type classification, dynamic class-weighted optimization proportional to inverse class frequencies, and information flow refinement through progressive stages. Loss dynamics analysis reveals that our weighting scheme strategically redistributes optimization attention, reducing variance by 90.7% for majority classes while increasing variance for minority classes, ensuring all seizure types receive proportional learning signals regardless of representation. The binary classifier achieves 99.64% specificity and 98.23% sensitivity (ROC-AUC = 0.995). The type classifier demonstrates >99% accuracy across seven seizure categories with perfect (100%) classification for three seizure types despite minimal representation. Cross-dataset validation on the University of Bonn dataset confirms robust generalization (96.0% accuracy) for binary seizure detection. This framework effectively addresses multi-level imbalance in neurophysiological signal classification with hierarchical class structures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info16070532
- OA Status
- gold
- Cited By
- 1
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411609053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411609053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info16070532Digital Object Identifier
- Title
-
Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-24Full publication date if available
- Authors
-
Peter Akor, Godwin Enemali, Usman Muhammad, Rajiv R. P. Singh, Hadi LarijaniList of authors in order
- Landing page
-
https://doi.org/10.3390/info16070532Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/info16070532Direct OA link when available
- Concepts
-
Epilepsy, Epileptic seizure, Deep learning, Computer science, Artificial intelligence, Machine learning, Psychology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411609053 |
|---|---|
| doi | https://doi.org/10.3390/info16070532 |
| ids.doi | https://doi.org/10.3390/info16070532 |
| ids.openalex | https://openalex.org/W4411609053 |
| fwci | 4.0838049 |
| type | article |
| title | Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained Classification |
| biblio.issue | 7 |
| biblio.volume | 16 |
| biblio.last_page | 532 |
| biblio.first_page | 532 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.973800003528595 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10094 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9700000286102295 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2738 |
| topics[2].subfield.display_name | Psychiatry and Mental health |
| topics[2].display_name | Epilepsy research and treatment |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C2778186239 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6199497580528259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q41571 |
| concepts[0].display_name | Epilepsy |
| concepts[1].id | https://openalex.org/C2779334592 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5664804577827454 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6279182 |
| concepts[1].display_name | Epileptic seizure |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48709726333618164 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48128002882003784 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46820834279060364 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3776599168777466 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.31040874123573303 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25162273645401 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/epilepsy |
| keywords[0].score | 0.6199497580528259 |
| keywords[0].display_name | Epilepsy |
| keywords[1].id | https://openalex.org/keywords/epileptic-seizure |
| keywords[1].score | 0.5664804577827454 |
| keywords[1].display_name | Epileptic seizure |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.48709726333618164 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48128002882003784 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.46820834279060364 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3776599168777466 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.31040874123573303 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.25162273645401 |
| keywords[7].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.3390/info16070532 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info16070532 |
| locations[1].id | pmh:oai:researchonline.gcu.ac.uk:openaire/87d1967a-ba48-4776-a7df-faba618f679c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402566 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | ResearchOnline (Glasgow Caledonian University) |
| locations[1].source.host_organization | https://openalex.org/I195939026 |
| locations[1].source.host_organization_name | Glasgow Caledonian University |
| locations[1].source.host_organization_lineage | https://openalex.org/I195939026 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | Akor, P, Enemali, G, Muhammad, U, Singh, R R & Larijani, H 2025, 'Hierarchical deep learning for comprehensive epileptic seizure analysis: from detection to fine-grained classification', Information, vol. 16, no. 7, 532. https://doi.org/10.3390/info16070532 |
| locations[1].landing_page_url | https://researchonline.gcu.ac.uk/en/publications/87d1967a-ba48-4776-a7df-faba618f679c |
| locations[2].id | pmh:oai:doaj.org/article:5613157b70394dbeaa20051ee650a73e |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Information, Vol 16, Iss 7, p 532 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/5613157b70394dbeaa20051ee650a73e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5118616152 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-8657-2435 |
| authorships[0].author.display_name | Peter Akor |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I195939026 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[0].institutions[0].id | https://openalex.org/I195939026 |
| authorships[0].institutions[0].ror | https://ror.org/03dvm1235 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I195939026 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Glasgow Caledonian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peter Akor |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[1].author.id | https://openalex.org/A5038402408 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2686-7035 |
| authorships[1].author.display_name | Godwin Enemali |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I195939026 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[1].institutions[0].id | https://openalex.org/I195939026 |
| authorships[1].institutions[0].ror | https://ror.org/03dvm1235 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I195939026 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Glasgow Caledonian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Godwin Enemali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[2].author.id | https://openalex.org/A5100645878 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7191-0245 |
| authorships[2].author.display_name | Usman Muhammad |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I195939026 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[2].institutions[0].id | https://openalex.org/I195939026 |
| authorships[2].institutions[0].ror | https://ror.org/03dvm1235 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I195939026 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Glasgow Caledonian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Usman Muhammad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[3].author.id | https://openalex.org/A5003031006 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1808-3433 |
| authorships[3].author.display_name | Rajiv R. P. Singh |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I195939026 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[3].institutions[0].id | https://openalex.org/I195939026 |
| authorships[3].institutions[0].ror | https://ror.org/03dvm1235 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I195939026 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Glasgow Caledonian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rajiv Ranjan Singh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[4].author.id | https://openalex.org/A5083724607 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6826-207X |
| authorships[4].author.display_name | Hadi Larijani |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I195939026 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| authorships[4].institutions[0].id | https://openalex.org/I195939026 |
| authorships[4].institutions[0].ror | https://ror.org/03dvm1235 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I195939026 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Glasgow Caledonian University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hadi Larijani |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Engineering, Computing and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/info16070532 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hierarchical Deep Learning for Comprehensive Epileptic Seizure Analysis: From Detection to Fine-Grained Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3082895349 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/info16070532 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info16070532 |
| primary_location.id | doi:10.3390/info16070532 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info16070532 |
| publication_date | 2025-06-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2028453556, https://openalex.org/W1981407695, https://openalex.org/W1984115041, https://openalex.org/W2927702442, https://openalex.org/W3117408138, https://openalex.org/W3115074069, https://openalex.org/W2963355311, https://openalex.org/W2915893085, https://openalex.org/W2799610518, https://openalex.org/W2943809479, https://openalex.org/W2762012795, https://openalex.org/W3039195401, https://openalex.org/W3046985897, https://openalex.org/W2793694534, https://openalex.org/W2118978333, https://openalex.org/W2148143831, https://openalex.org/W2936503027, https://openalex.org/W4386121763, https://openalex.org/W2963290013, https://openalex.org/W3126317075, https://openalex.org/W2053744708, https://openalex.org/W3032515910, https://openalex.org/W4394903522, https://openalex.org/W4377195629, https://openalex.org/W4225727545, https://openalex.org/W4390605203, https://openalex.org/W4385323143 |
| referenced_works_count | 27 |
| abstract_inverted_index.= | 91, 162 |
| abstract_inverted_index.a | 47, 56, 61, 86, 94 |
| abstract_inverted_index.We | 45 |
| abstract_inverted_index.by | 60, 130 |
| abstract_inverted_index.in | 208 |
| abstract_inverted_index.of | 17, 28, 42, 150, 190 |
| abstract_inverted_index.on | 187 |
| abstract_inverted_index.to | 12, 76, 105 |
| abstract_inverted_index.5:1 | 81 |
| abstract_inverted_index.EEG | 6 |
| abstract_inverted_index.The | 83, 152, 164 |
| abstract_inverted_index.all | 142 |
| abstract_inverted_index.and | 3, 32, 109, 158 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 98, 132, 138, 178, 198 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.s). | 44 |
| abstract_inverted_index.the | 18, 67, 71, 188 |
| abstract_inverted_index.two | 53 |
| abstract_inverted_index.(9:1 | 79 |
| abstract_inverted_index.Bonn | 191 |
| abstract_inverted_index.Loss | 116 |
| abstract_inverted_index.This | 64, 202 |
| abstract_inverted_index.deep | 49 |
| abstract_inverted_index.flow | 111 |
| abstract_inverted_index.from | 5, 74 |
| abstract_inverted_index.high | 37 |
| abstract_inverted_index.pure | 96 |
| abstract_inverted_index.rare | 33 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.type | 99, 165 |
| abstract_inverted_index.with | 36, 52, 174, 212 |
| abstract_inverted_index.0.9), | 92 |
| abstract_inverted_index.150:1 | 29, 75 |
| abstract_inverted_index.90.7% | 131 |
| abstract_inverted_index.99.5% | 95 |
| abstract_inverted_index.CNNs: | 55 |
| abstract_inverted_index.class | 14, 107, 214 |
| abstract_inverted_index.faces | 8 |
| abstract_inverted_index.seven | 171 |
| abstract_inverted_index.three | 179 |
| abstract_inverted_index.types | 144, 181 |
| abstract_inverted_index.while | 135 |
| abstract_inverted_index.(100%) | 176 |
| abstract_inverted_index.(96.0% | 196 |
| abstract_inverted_index.(TUSZ) | 23 |
| abstract_inverted_index.98.23% | 159 |
| abstract_inverted_index.99.64% | 156 |
| abstract_inverted_index.Temple | 19 |
| abstract_inverted_index.across | 170 |
| abstract_inverted_index.binary | 57, 153, 199 |
| abstract_inverted_index.common | 31 |
| abstract_inverted_index.levels | 78 |
| abstract_inverted_index.ratios | 27 |
| abstract_inverted_index.robust | 194 |
| abstract_inverted_index.scheme | 123 |
| abstract_inverted_index.signal | 210 |
| abstract_inverted_index.type). | 82 |
| abstract_inverted_index.types, | 35 |
| abstract_inverted_index.>99% | 168 |
| abstract_inverted_index.0.995). | 163 |
| abstract_inverted_index.Seizure | 22 |
| abstract_inverted_index.between | 30 |
| abstract_inverted_index.binary, | 80 |
| abstract_inverted_index.classes | 134 |
| abstract_inverted_index.dataset | 24, 97, 192 |
| abstract_inverted_index.despite | 182 |
| abstract_inverted_index.dynamic | 101 |
| abstract_inverted_index.extreme | 13 |
| abstract_inverted_index.inverse | 106 |
| abstract_inverted_index.maximum | 72 |
| abstract_inverted_index.minimal | 183 |
| abstract_inverted_index.perfect | 175 |
| abstract_inverted_index.propose | 46 |
| abstract_inverted_index.receive | 145 |
| abstract_inverted_index.reveals | 25, 119 |
| abstract_inverted_index.seizure | 1, 34, 143, 172, 180, 200 |
| abstract_inverted_index.signals | 148 |
| abstract_inverted_index.stages. | 115 |
| abstract_inverted_index.through | 113 |
| abstract_inverted_index.(ROC-AUC | 161 |
| abstract_inverted_index.(seizure | 40 |
| abstract_inverted_index.1–1638 | 43 |
| abstract_inverted_index.Analysis | 16 |
| abstract_inverted_index.Hospital | 21 |
| abstract_inverted_index.accuracy | 169 |
| abstract_inverted_index.achieves | 155 |
| abstract_inverted_index.analysis | 118 |
| abstract_inverted_index.approach | 65 |
| abstract_inverted_index.cascaded | 48 |
| abstract_inverted_index.classes, | 140 |
| abstract_inverted_index.confirms | 193 |
| abstract_inverted_index.creating | 93 |
| abstract_inverted_index.detector | 58 |
| abstract_inverted_index.dynamics | 117 |
| abstract_inverted_index.ensuring | 141 |
| abstract_inverted_index.followed | 59 |
| abstract_inverted_index.learning | 50, 147 |
| abstract_inverted_index.majority | 133 |
| abstract_inverted_index.minority | 139 |
| abstract_inverted_index.problem, | 69 |
| abstract_inverted_index.reducing | 70, 128 |
| abstract_inverted_index.temporal | 38 |
| abstract_inverted_index.variance | 129, 137 |
| abstract_inverted_index.Epileptic | 0 |
| abstract_inverted_index.accuracy) | 197 |
| abstract_inverted_index.addresses | 205 |
| abstract_inverted_index.detection | 2 |
| abstract_inverted_index.durations | 41 |
| abstract_inverted_index.filtering | 88 |
| abstract_inverted_index.framework | 203 |
| abstract_inverted_index.imbalance | 26, 73, 207 |
| abstract_inverted_index.mechanism | 89 |
| abstract_inverted_index.weighting | 122 |
| abstract_inverted_index.(threshold | 90 |
| abstract_inverted_index.University | 20, 189 |
| abstract_inverted_index.attention, | 127 |
| abstract_inverted_index.categories | 173 |
| abstract_inverted_index.challenges | 10 |
| abstract_inverted_index.classifier | 154, 166 |
| abstract_inverted_index.decomposes | 66 |
| abstract_inverted_index.detection. | 201 |
| abstract_inverted_index.imbalance. | 15 |
| abstract_inverted_index.implements | 85 |
| abstract_inverted_index.increasing | 136 |
| abstract_inverted_index.manageable | 77 |
| abstract_inverted_index.recordings | 7 |
| abstract_inverted_index.refinement | 112 |
| abstract_inverted_index.regardless | 149 |
| abstract_inverted_index.validation | 186 |
| abstract_inverted_index.classifier. | 63 |
| abstract_inverted_index.effectively | 204 |
| abstract_inverted_index.information | 110 |
| abstract_inverted_index.multi-class | 62 |
| abstract_inverted_index.multi-level | 206 |
| abstract_inverted_index.progressive | 114 |
| abstract_inverted_index.sensitivity | 160 |
| abstract_inverted_index.significant | 9 |
| abstract_inverted_index.specialized | 54 |
| abstract_inverted_index.specificity | 157 |
| abstract_inverted_index.structures. | 215 |
| abstract_inverted_index.architecture | 51, 84 |
| abstract_inverted_index.demonstrates | 167 |
| abstract_inverted_index.frequencies, | 108 |
| abstract_inverted_index.hierarchical | 213 |
| abstract_inverted_index.optimization | 103, 126 |
| abstract_inverted_index.proportional | 104, 146 |
| abstract_inverted_index.Cross-dataset | 185 |
| abstract_inverted_index.heterogeneity | 39 |
| abstract_inverted_index.redistributes | 125 |
| abstract_inverted_index.strategically | 124 |
| abstract_inverted_index.class-weighted | 102 |
| abstract_inverted_index.classification | 4, 68, 177, 211 |
| abstract_inverted_index.generalization | 195 |
| abstract_inverted_index.classification, | 100 |
| abstract_inverted_index.high-confidence | 87 |
| abstract_inverted_index.representation. | 151, 184 |
| abstract_inverted_index.neurophysiological | 209 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.87697353 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |