Hierarchical modeling of risk factors with and without prior information—the process of regression model evaluation for an example of respiratory diseases in piglet production from daily practice data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fvets.2025.1611771
In veterinary epidemiology, regression models are commonly used to describe animal health and related risk factors. However, model selection and evaluation present ongoing challenges—especially when many potential predictors, complex interactions, and limited sample sizes are involved. The VASIB project serves as a representative example, focusing on piglet-producing farms with persistent respiratory disease problems. Across 30 farms, a wide array of variables was collected at the farm, barn, compartment, pen, and individual animal levels, aiming to support optimized treatment and management strategies to improve respiratory health. This study investigates the occurrence of coughing in pigs using various epidemiological models, including hierarchical frequentist logistic regression, non-hierarchical Bayesian logistic regression (with full and partial pooling), and hierarchical Bayesian models with informative and non-informative priors. These approaches are evaluated and compared using statistical measures such as the corrected Akaike Information Criterion (AIC c ), marginal and conditional R 2 , and intra-class correlation coefficients (ICC c /ICC adj ). In the frequentist models, convergence issues arose due to limited observations within clusters, which did not occur in the Bayesian framework. While the choice of priors had limited influence on Bayesian model results, differences between models suggest that prior specification can still be relevant. Thus, it is important to assess and compare various model structures—including both hierarchical and non-hierarchical, and Bayesian versus frequentist approaches—to capture the data’s complexity and ensure robust inference. Here, the Bayesian hierarchical models outperform frequentist models, especially in handling complex data structures and providing robust estimates. Across all models, stocking density and floor condition emerged as consistently significant factors influencing the likelihood of coughing. Overall, this work emphasizes that there is no universal rule for model selection in veterinary data analysis. Instead, a balanced, context-sensitive modeling strategy that considers both statistical and epidemiological perspectives is essential to derive meaningful and actionable conclusions for improving animal health.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fvets.2025.1611771
- https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdf
- OA Status
- gold
- References
- 33
- OpenAlex ID
- https://openalex.org/W4414628615
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414628615Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fvets.2025.1611771Digital Object Identifier
- Title
-
Hierarchical modeling of risk factors with and without prior information—the process of regression model evaluation for an example of respiratory diseases in piglet production from daily practice dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Timur Tug, Fiona Mers, Franziska Schäkel, Doris Höltig, Lothar Kreienbrock, Katja IckstadtList of authors in order
- Landing page
-
https://doi.org/10.3389/fvets.2025.1611771Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414628615 |
|---|---|
| doi | https://doi.org/10.3389/fvets.2025.1611771 |
| ids.doi | https://doi.org/10.3389/fvets.2025.1611771 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41090074 |
| ids.openalex | https://openalex.org/W4414628615 |
| fwci | 0.0 |
| type | article |
| title | Hierarchical modeling of risk factors with and without prior information—the process of regression model evaluation for an example of respiratory diseases in piglet production from daily practice data |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 1611771 |
| biblio.first_page | 1611771 |
| topics[0].id | https://openalex.org/T11688 |
| topics[0].field.id | https://openalex.org/fields/24 |
| topics[0].field.display_name | Immunology and Microbiology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2404 |
| topics[0].subfield.display_name | Microbiology |
| topics[0].display_name | Microbial infections and disease research |
| topics[1].id | https://openalex.org/T10838 |
| topics[1].field.id | https://openalex.org/fields/34 |
| topics[1].field.display_name | Veterinary |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3404 |
| topics[1].subfield.display_name | Small Animals |
| topics[1].display_name | Animal Behavior and Welfare Studies |
| topics[2].id | https://openalex.org/T10594 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic and phenotypic traits in livestock |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| language | en |
| locations[0].id | doi:10.3389/fvets.2025.1611771 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2594976040 |
| locations[0].source.issn | 2297-1769 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2297-1769 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Veterinary Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Veterinary Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fvets.2025.1611771 |
| locations[1].id | pmid:41090074 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in veterinary science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41090074 |
| locations[2].id | pmh:oai:doaj.org/article:984c192aa26344bfa49c812fe655a3ac |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Veterinary Science, Vol 12 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/984c192aa26344bfa49c812fe655a3ac |
| locations[3].id | pmh:oai:europepmc.org:11324393 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12516706 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5051035932 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8069-2091 |
| authorships[0].author.display_name | Timur Tug |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I200332995 |
| authorships[0].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | TU Dortmund University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Timur Tug |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| authorships[1].author.id | https://openalex.org/A5119770232 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fiona Mers |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I200332995 |
| authorships[1].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | TU Dortmund University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fiona Mers |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| authorships[2].author.id | https://openalex.org/A5055220663 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Franziska Schäkel |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I189991 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hannover, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I189991 |
| authorships[2].institutions[0].ror | https://ror.org/015qjqf64 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I189991 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | University of Veterinary Medicine Hannover, Foundation |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Franziska Schäkel |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hannover, Germany |
| authorships[3].author.id | https://openalex.org/A5018921391 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Doris Höltig |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189991 |
| authorships[3].affiliations[0].raw_affiliation_string | Clinical Centre for Farm Animals, University of Veterinary Medicine, Hannover, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I189991 |
| authorships[3].institutions[0].ror | https://ror.org/015qjqf64 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I189991 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Veterinary Medicine Hannover, Foundation |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Doris Höltig |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Clinical Centre for Farm Animals, University of Veterinary Medicine, Hannover, Germany |
| authorships[4].author.id | https://openalex.org/A5038390247 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1963-6001 |
| authorships[4].author.display_name | Lothar Kreienbrock |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189991 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hannover, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I189991 |
| authorships[4].institutions[0].ror | https://ror.org/015qjqf64 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189991 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | University of Veterinary Medicine Hannover, Foundation |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lothar Kreienbrock |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hannover, Germany |
| authorships[5].author.id | https://openalex.org/A5063815245 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5157-2496 |
| authorships[5].author.display_name | Katja Ickstadt |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I200332995 |
| authorships[5].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | TU Dortmund University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Katja Ickstadt |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Statistics, TU Dortmund University, Dortmund, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hierarchical modeling of risk factors with and without prior information—the process of regression model evaluation for an example of respiratory diseases in piglet production from daily practice data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11688 |
| primary_topic.field.id | https://openalex.org/fields/24 |
| primary_topic.field.display_name | Immunology and Microbiology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2404 |
| primary_topic.subfield.display_name | Microbiology |
| primary_topic.display_name | Microbial infections and disease research |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fvets.2025.1611771 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2594976040 |
| best_oa_location.source.issn | 2297-1769 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2297-1769 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Veterinary Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Veterinary Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fvets.2025.1611771 |
| primary_location.id | doi:10.3389/fvets.2025.1611771 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2594976040 |
| primary_location.source.issn | 2297-1769 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2297-1769 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Veterinary Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2025.1611771/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Veterinary Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fvets.2025.1611771 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2981085123, https://openalex.org/W4387408602, https://openalex.org/W2495863831, https://openalex.org/W4223513840, https://openalex.org/W2750104038, https://openalex.org/W3130410156, https://openalex.org/W2137167752, https://openalex.org/W4232976691, https://openalex.org/W4236702654, https://openalex.org/W4321238618, https://openalex.org/W2001388444, https://openalex.org/W2115098571, https://openalex.org/W2093789600, https://openalex.org/W1790510810, https://openalex.org/W2749069611, https://openalex.org/W2962758893, https://openalex.org/W3214743865, https://openalex.org/W2355025508, https://openalex.org/W4254687493, https://openalex.org/W2753599755, https://openalex.org/W3153999239, https://openalex.org/W1951724000, https://openalex.org/W2019655958, https://openalex.org/W2505756961, https://openalex.org/W2139606141, https://openalex.org/W4292691288, https://openalex.org/W4232155347, https://openalex.org/W2413419749, https://openalex.org/W2044233129, https://openalex.org/W1981457167, https://openalex.org/W1977240640, https://openalex.org/W3104822289, https://openalex.org/W4399581140 |
| referenced_works_count | 33 |
| abstract_inverted_index., | 145 |
| abstract_inverted_index.2 | 144 |
| abstract_inverted_index.R | 143 |
| abstract_inverted_index.a | 41, 56, 281 |
| abstract_inverted_index.c | 138, 151 |
| abstract_inverted_index.), | 139 |
| abstract_inverted_index.). | 154 |
| abstract_inverted_index.30 | 54 |
| abstract_inverted_index.In | 0, 155 |
| abstract_inverted_index.as | 40, 131, 254 |
| abstract_inverted_index.at | 63 |
| abstract_inverted_index.be | 197 |
| abstract_inverted_index.in | 92, 172, 236, 276 |
| abstract_inverted_index.is | 201, 269, 293 |
| abstract_inverted_index.it | 200 |
| abstract_inverted_index.no | 270 |
| abstract_inverted_index.of | 59, 90, 179, 261 |
| abstract_inverted_index.on | 45, 184 |
| abstract_inverted_index.to | 8, 74, 81, 163, 203, 295 |
| abstract_inverted_index.The | 36 |
| abstract_inverted_index.adj | 153 |
| abstract_inverted_index.all | 246 |
| abstract_inverted_index.and | 12, 19, 30, 69, 78, 109, 112, 118, 125, 141, 146, 205, 212, 214, 223, 241, 250, 290, 298 |
| abstract_inverted_index.are | 5, 34, 123 |
| abstract_inverted_index.can | 195 |
| abstract_inverted_index.did | 169 |
| abstract_inverted_index.due | 162 |
| abstract_inverted_index.for | 273, 301 |
| abstract_inverted_index.had | 181 |
| abstract_inverted_index.not | 170 |
| abstract_inverted_index.the | 64, 88, 132, 156, 173, 177, 220, 228, 259 |
| abstract_inverted_index.was | 61 |
| abstract_inverted_index.(AIC | 137 |
| abstract_inverted_index.(ICC | 150 |
| abstract_inverted_index./ICC | 152 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.both | 210, 288 |
| abstract_inverted_index.data | 239, 278 |
| abstract_inverted_index.full | 108 |
| abstract_inverted_index.many | 25 |
| abstract_inverted_index.pen, | 68 |
| abstract_inverted_index.pigs | 93 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.rule | 272 |
| abstract_inverted_index.such | 130 |
| abstract_inverted_index.that | 192, 267, 286 |
| abstract_inverted_index.this | 264 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.when | 24 |
| abstract_inverted_index.wide | 57 |
| abstract_inverted_index.with | 48, 116 |
| abstract_inverted_index.work | 265 |
| abstract_inverted_index.(with | 107 |
| abstract_inverted_index.Here, | 227 |
| abstract_inverted_index.These | 121 |
| abstract_inverted_index.Thus, | 199 |
| abstract_inverted_index.VASIB | 37 |
| abstract_inverted_index.While | 176 |
| abstract_inverted_index.arose | 161 |
| abstract_inverted_index.array | 58 |
| abstract_inverted_index.barn, | 66 |
| abstract_inverted_index.farm, | 65 |
| abstract_inverted_index.farms | 47 |
| abstract_inverted_index.floor | 251 |
| abstract_inverted_index.model | 17, 186, 208, 274 |
| abstract_inverted_index.occur | 171 |
| abstract_inverted_index.prior | 193 |
| abstract_inverted_index.sizes | 33 |
| abstract_inverted_index.still | 196 |
| abstract_inverted_index.study | 86 |
| abstract_inverted_index.there | 268 |
| abstract_inverted_index.using | 94, 127 |
| abstract_inverted_index.which | 168 |
| abstract_inverted_index.Across | 53, 245 |
| abstract_inverted_index.Akaike | 134 |
| abstract_inverted_index.aiming | 73 |
| abstract_inverted_index.animal | 10, 71, 303 |
| abstract_inverted_index.assess | 204 |
| abstract_inverted_index.choice | 178 |
| abstract_inverted_index.derive | 296 |
| abstract_inverted_index.ensure | 224 |
| abstract_inverted_index.farms, | 55 |
| abstract_inverted_index.health | 11 |
| abstract_inverted_index.issues | 160 |
| abstract_inverted_index.models | 4, 115, 190, 231 |
| abstract_inverted_index.priors | 180 |
| abstract_inverted_index.robust | 225, 243 |
| abstract_inverted_index.sample | 32 |
| abstract_inverted_index.serves | 39 |
| abstract_inverted_index.versus | 216 |
| abstract_inverted_index.within | 166 |
| abstract_inverted_index.between | 189 |
| abstract_inverted_index.capture | 219 |
| abstract_inverted_index.compare | 206 |
| abstract_inverted_index.complex | 28, 238 |
| abstract_inverted_index.density | 249 |
| abstract_inverted_index.disease | 51 |
| abstract_inverted_index.emerged | 253 |
| abstract_inverted_index.factors | 257 |
| abstract_inverted_index.health. | 84, 304 |
| abstract_inverted_index.improve | 82 |
| abstract_inverted_index.levels, | 72 |
| abstract_inverted_index.limited | 31, 164, 182 |
| abstract_inverted_index.models, | 97, 158, 234, 247 |
| abstract_inverted_index.ongoing | 22 |
| abstract_inverted_index.partial | 110 |
| abstract_inverted_index.present | 21 |
| abstract_inverted_index.priors. | 120 |
| abstract_inverted_index.project | 38 |
| abstract_inverted_index.related | 13 |
| abstract_inverted_index.suggest | 191 |
| abstract_inverted_index.support | 75 |
| abstract_inverted_index.various | 95, 207 |
| abstract_inverted_index.Bayesian | 104, 114, 174, 185, 215, 229 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Instead, | 280 |
| abstract_inverted_index.Overall, | 263 |
| abstract_inverted_index.commonly | 6 |
| abstract_inverted_index.compared | 126 |
| abstract_inverted_index.coughing | 91 |
| abstract_inverted_index.data’s | 221 |
| abstract_inverted_index.describe | 9 |
| abstract_inverted_index.example, | 43 |
| abstract_inverted_index.factors. | 15 |
| abstract_inverted_index.focusing | 44 |
| abstract_inverted_index.handling | 237 |
| abstract_inverted_index.logistic | 101, 105 |
| abstract_inverted_index.marginal | 140 |
| abstract_inverted_index.measures | 129 |
| abstract_inverted_index.modeling | 284 |
| abstract_inverted_index.results, | 187 |
| abstract_inverted_index.stocking | 248 |
| abstract_inverted_index.strategy | 285 |
| abstract_inverted_index.Criterion | 136 |
| abstract_inverted_index.analysis. | 279 |
| abstract_inverted_index.balanced, | 282 |
| abstract_inverted_index.clusters, | 167 |
| abstract_inverted_index.collected | 62 |
| abstract_inverted_index.condition | 252 |
| abstract_inverted_index.considers | 287 |
| abstract_inverted_index.corrected | 133 |
| abstract_inverted_index.coughing. | 262 |
| abstract_inverted_index.essential | 294 |
| abstract_inverted_index.evaluated | 124 |
| abstract_inverted_index.important | 202 |
| abstract_inverted_index.improving | 302 |
| abstract_inverted_index.including | 98 |
| abstract_inverted_index.influence | 183 |
| abstract_inverted_index.involved. | 35 |
| abstract_inverted_index.optimized | 76 |
| abstract_inverted_index.pooling), | 111 |
| abstract_inverted_index.potential | 26 |
| abstract_inverted_index.problems. | 52 |
| abstract_inverted_index.providing | 242 |
| abstract_inverted_index.relevant. | 198 |
| abstract_inverted_index.selection | 18, 275 |
| abstract_inverted_index.treatment | 77 |
| abstract_inverted_index.universal | 271 |
| abstract_inverted_index.variables | 60 |
| abstract_inverted_index.actionable | 299 |
| abstract_inverted_index.approaches | 122 |
| abstract_inverted_index.complexity | 222 |
| abstract_inverted_index.emphasizes | 266 |
| abstract_inverted_index.especially | 235 |
| abstract_inverted_index.estimates. | 244 |
| abstract_inverted_index.evaluation | 20 |
| abstract_inverted_index.framework. | 175 |
| abstract_inverted_index.individual | 70 |
| abstract_inverted_index.inference. | 226 |
| abstract_inverted_index.likelihood | 260 |
| abstract_inverted_index.management | 79 |
| abstract_inverted_index.meaningful | 297 |
| abstract_inverted_index.occurrence | 89 |
| abstract_inverted_index.outperform | 232 |
| abstract_inverted_index.persistent | 49 |
| abstract_inverted_index.regression | 3, 106 |
| abstract_inverted_index.strategies | 80 |
| abstract_inverted_index.structures | 240 |
| abstract_inverted_index.veterinary | 1, 277 |
| abstract_inverted_index.Information | 135 |
| abstract_inverted_index.conclusions | 300 |
| abstract_inverted_index.conditional | 142 |
| abstract_inverted_index.convergence | 159 |
| abstract_inverted_index.correlation | 148 |
| abstract_inverted_index.differences | 188 |
| abstract_inverted_index.frequentist | 100, 157, 217, 233 |
| abstract_inverted_index.influencing | 258 |
| abstract_inverted_index.informative | 117 |
| abstract_inverted_index.intra-class | 147 |
| abstract_inverted_index.predictors, | 27 |
| abstract_inverted_index.regression, | 102 |
| abstract_inverted_index.respiratory | 50, 83 |
| abstract_inverted_index.significant | 256 |
| abstract_inverted_index.statistical | 128, 289 |
| abstract_inverted_index.coefficients | 149 |
| abstract_inverted_index.compartment, | 67 |
| abstract_inverted_index.consistently | 255 |
| abstract_inverted_index.hierarchical | 99, 113, 211, 230 |
| abstract_inverted_index.investigates | 87 |
| abstract_inverted_index.observations | 165 |
| abstract_inverted_index.perspectives | 292 |
| abstract_inverted_index.epidemiology, | 2 |
| abstract_inverted_index.interactions, | 29 |
| abstract_inverted_index.specification | 194 |
| abstract_inverted_index.representative | 42 |
| abstract_inverted_index.approaches—to | 218 |
| abstract_inverted_index.epidemiological | 96, 291 |
| abstract_inverted_index.non-informative | 119 |
| abstract_inverted_index.non-hierarchical | 103 |
| abstract_inverted_index.piglet-producing | 46 |
| abstract_inverted_index.context-sensitive | 283 |
| abstract_inverted_index.non-hierarchical, | 213 |
| abstract_inverted_index.structures—including | 209 |
| abstract_inverted_index.challenges—especially | 23 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5051035932, https://openalex.org/A5038390247 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I189991, https://openalex.org/I200332995 |
| citation_normalized_percentile.value | 0.42969201 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |