Hierarchical Reinforcement Learning Method for Autonomous Vehicle Behavior Planning Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1911.03799
In this work, we propose a hierarchical reinforcement learning (HRL) structure which is capable of performing autonomous vehicle planning tasks in simulated environments with multiple sub-goals. In this hierarchical structure, the network is capable of 1) learning one task with multiple sub-goals simultaneously; 2) extracting attentions of states according to changing sub-goals during the learning process; 3) reusing the well-trained network of sub-goals for other similar tasks with the same sub-goals. The states are defined as processed observations which are transmitted from the perception system of the autonomous vehicle. A hybrid reward mechanism is designed for different hierarchical layers in the proposed HRL structure. Compared to traditional RL methods, our algorithm is more sample-efficient since its modular design allows reusing the policies of sub-goals across similar tasks. The results show that the proposed method converges to an optimal policy faster than traditional RL methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1911.03799
- https://arxiv.org/pdf/1911.03799
- OA Status
- green
- Cited By
- 7
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2986034419
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2986034419Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1911.03799Digital Object Identifier
- Title
-
Hierarchical Reinforcement Learning Method for Autonomous Vehicle Behavior PlanningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-09Full publication date if available
- Authors
-
Zhiqian Qiao, Zachariah Tyree, Priyantha Mudalige, Jeff Schneider, John M. DolanList of authors in order
- Landing page
-
https://arxiv.org/abs/1911.03799Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1911.03799Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1911.03799Direct OA link when available
- Concepts
-
Reinforcement learning, Modular design, Computer science, Reuse, Task (project management), Process (computing), Artificial intelligence, Perception, Machine learning, Engineering, Operating system, Neuroscience, Waste management, Systems engineering, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2021: 3, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2986034419 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1911.03799 |
| ids.doi | https://doi.org/10.48550/arxiv.1911.03799 |
| ids.mag | 2986034419 |
| ids.openalex | https://openalex.org/W2986034419 |
| fwci | |
| type | preprint |
| title | Hierarchical Reinforcement Learning Method for Autonomous Vehicle Behavior Planning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T10524 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9711999893188477 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Traffic control and management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.903954803943634 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C101468663 |
| concepts[1].level | 2 |
| concepts[1].score | 0.75837242603302 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1620158 |
| concepts[1].display_name | Modular design |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7508558034896851 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C206588197 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7451751232147217 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q846574 |
| concepts[3].display_name | Reuse |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6421219706535339 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5789124965667725 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5341362953186035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C26760741 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4249255359172821 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[7].display_name | Perception |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37251901626586914 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11926478147506714 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C548081761 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[12].display_name | Waste management |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.903954803943634 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/modular-design |
| keywords[1].score | 0.75837242603302 |
| keywords[1].display_name | Modular design |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7508558034896851 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/reuse |
| keywords[3].score | 0.7451751232147217 |
| keywords[3].display_name | Reuse |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.6421219706535339 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.5789124965667725 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5341362953186035 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/perception |
| keywords[7].score | 0.4249255359172821 |
| keywords[7].display_name | Perception |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.37251901626586914 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.11926478147506714 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1911.03799 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1911.03799 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1911.03799 |
| locations[1].id | doi:10.48550/arxiv.1911.03799 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1911.03799 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073672179 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhiqian Qiao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiqian Qiao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021740440 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zachariah Tyree |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zachariah Tyree |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088286364 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Priyantha Mudalige |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Priyantha Mudalige |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055199976 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5080-9073 |
| authorships[3].author.display_name | Jeff Schneider |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jeff Schneider |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015076162 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2062-100X |
| authorships[4].author.display_name | John M. Dolan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | John M. Dolan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1911.03799 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hierarchical Reinforcement Learning Method for Autonomous Vehicle Behavior Planning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W2384475851, https://openalex.org/W2000444236, https://openalex.org/W4306904969, https://openalex.org/W2138720691, https://openalex.org/W4362501864, https://openalex.org/W4380318855, https://openalex.org/W2031695474, https://openalex.org/W2353602216, https://openalex.org/W2024136090, https://openalex.org/W2598946408 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1911.03799 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1911.03799 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1911.03799 |
| primary_location.id | pmh:oai:arXiv.org:1911.03799 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1911.03799 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1911.03799 |
| publication_date | 2019-11-09 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2963262099, https://openalex.org/W2145339207, https://openalex.org/W1488730473, https://openalex.org/W2610757271, https://openalex.org/W2061562262, https://openalex.org/W2120581524, https://openalex.org/W2257979135, https://openalex.org/W2611629860, https://openalex.org/W2963625099, https://openalex.org/W1757796397, https://openalex.org/W1505937442, https://openalex.org/W2100800486, https://openalex.org/W2155968351, https://openalex.org/W2253991908, https://openalex.org/W2169977622, https://openalex.org/W2201581102, https://openalex.org/W2016151598, https://openalex.org/W1134424270, https://openalex.org/W2173248099, https://openalex.org/W1988496501, https://openalex.org/W2055501135, https://openalex.org/W2411577903, https://openalex.org/W2963312729 |
| referenced_works_count | 23 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.1) | 35 |
| abstract_inverted_index.2) | 43 |
| abstract_inverted_index.3) | 56 |
| abstract_inverted_index.In | 0, 26 |
| abstract_inverted_index.RL | 107, 142 |
| abstract_inverted_index.an | 136 |
| abstract_inverted_index.as | 75 |
| abstract_inverted_index.in | 20, 99 |
| abstract_inverted_index.is | 12, 32, 93, 111 |
| abstract_inverted_index.of | 14, 34, 46, 61, 85, 122 |
| abstract_inverted_index.to | 49, 105, 135 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.HRL | 102 |
| abstract_inverted_index.The | 71, 127 |
| abstract_inverted_index.are | 73, 79 |
| abstract_inverted_index.for | 63, 95 |
| abstract_inverted_index.its | 115 |
| abstract_inverted_index.one | 37 |
| abstract_inverted_index.our | 109 |
| abstract_inverted_index.the | 30, 53, 58, 68, 82, 86, 100, 120, 131 |
| abstract_inverted_index.from | 81 |
| abstract_inverted_index.more | 112 |
| abstract_inverted_index.same | 69 |
| abstract_inverted_index.show | 129 |
| abstract_inverted_index.task | 38 |
| abstract_inverted_index.than | 140 |
| abstract_inverted_index.that | 130 |
| abstract_inverted_index.this | 1, 27 |
| abstract_inverted_index.with | 23, 39, 67 |
| abstract_inverted_index.(HRL) | 9 |
| abstract_inverted_index.other | 64 |
| abstract_inverted_index.since | 114 |
| abstract_inverted_index.tasks | 19, 66 |
| abstract_inverted_index.which | 11, 78 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.across | 124 |
| abstract_inverted_index.allows | 118 |
| abstract_inverted_index.design | 117 |
| abstract_inverted_index.during | 52 |
| abstract_inverted_index.faster | 139 |
| abstract_inverted_index.hybrid | 90 |
| abstract_inverted_index.layers | 98 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.policy | 138 |
| abstract_inverted_index.reward | 91 |
| abstract_inverted_index.states | 47, 72 |
| abstract_inverted_index.system | 84 |
| abstract_inverted_index.tasks. | 126 |
| abstract_inverted_index.capable | 13, 33 |
| abstract_inverted_index.defined | 74 |
| abstract_inverted_index.modular | 116 |
| abstract_inverted_index.network | 31, 60 |
| abstract_inverted_index.optimal | 137 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.results | 128 |
| abstract_inverted_index.reusing | 57, 119 |
| abstract_inverted_index.similar | 65, 125 |
| abstract_inverted_index.vehicle | 17 |
| abstract_inverted_index.Compared | 104 |
| abstract_inverted_index.changing | 50 |
| abstract_inverted_index.designed | 94 |
| abstract_inverted_index.learning | 8, 36, 54 |
| abstract_inverted_index.methods, | 108 |
| abstract_inverted_index.methods. | 143 |
| abstract_inverted_index.multiple | 24, 40 |
| abstract_inverted_index.planning | 18 |
| abstract_inverted_index.policies | 121 |
| abstract_inverted_index.process; | 55 |
| abstract_inverted_index.proposed | 101, 132 |
| abstract_inverted_index.vehicle. | 88 |
| abstract_inverted_index.according | 48 |
| abstract_inverted_index.algorithm | 110 |
| abstract_inverted_index.converges | 134 |
| abstract_inverted_index.different | 96 |
| abstract_inverted_index.mechanism | 92 |
| abstract_inverted_index.processed | 76 |
| abstract_inverted_index.simulated | 21 |
| abstract_inverted_index.structure | 10 |
| abstract_inverted_index.sub-goals | 41, 51, 62, 123 |
| abstract_inverted_index.attentions | 45 |
| abstract_inverted_index.autonomous | 16, 87 |
| abstract_inverted_index.extracting | 44 |
| abstract_inverted_index.perception | 83 |
| abstract_inverted_index.performing | 15 |
| abstract_inverted_index.structure, | 29 |
| abstract_inverted_index.structure. | 103 |
| abstract_inverted_index.sub-goals. | 25, 70 |
| abstract_inverted_index.traditional | 106, 141 |
| abstract_inverted_index.transmitted | 80 |
| abstract_inverted_index.environments | 22 |
| abstract_inverted_index.hierarchical | 6, 28, 97 |
| abstract_inverted_index.observations | 77 |
| abstract_inverted_index.well-trained | 59 |
| abstract_inverted_index.reinforcement | 7 |
| abstract_inverted_index.simultaneously; | 42 |
| abstract_inverted_index.sample-efficient | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |