High-Accuracy Prediction of Emerging Pollutant Adsorption by Activated Carbon and Mechanism Parsing Using Machine Learning Article Swipe
Chuan Ding
,
Tao Yuan
,
Rongbing Fu
,
Yueqing Xie
,
Zhemin Shen
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5902447
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5902447
Related Topics
Concepts
No concepts available.
Metadata
- Type
- article
- Landing Page
- https://doi.org/10.2139/ssrn.5902447
- OA Status
- green
- References
- 13
- OpenAlex ID
- https://openalex.org/W4417208891
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417208891Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5902447Digital Object Identifier
- Title
-
High-Accuracy Prediction of Emerging Pollutant Adsorption by Activated Carbon and Mechanism Parsing Using Machine LearningWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Chuan Ding, Tao Yuan, Rongbing Fu, Yueqing Xie, Zhemin ShenList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5902447Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5902447Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
13Number of works referenced by this work
Full payload
| id | https://openalex.org/W4417208891 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5902447 |
| ids.doi | https://doi.org/10.2139/ssrn.5902447 |
| ids.openalex | https://openalex.org/W4417208891 |
| fwci | |
| type | article |
| title | High-Accuracy Prediction of Emerging Pollutant Adsorption by Activated Carbon and Mechanism Parsing Using Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.2139/ssrn.5902447 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5902447 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058569319 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9560-8585 |
| authorships[0].author.display_name | Chuan Ding |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chuan Ding |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100715981 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6484-4876 |
| authorships[1].author.display_name | Tao Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Yuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063941961 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-0135-2003 |
| authorships[2].author.display_name | Rongbing Fu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rongbing Fu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024719363 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9068-3914 |
| authorships[3].author.display_name | Yueqing Xie |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yueqing Xie |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044624028 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8043-5228 |
| authorships[4].author.display_name | Zhemin Shen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhemin Shen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5902447 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | High-Accuracy Prediction of Emerging Pollutant Adsorption by Activated Carbon and Mechanism Parsing Using Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T23:09:37.256380 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5902447 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5902447 |
| primary_location.id | doi:10.2139/ssrn.5902447 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5902447 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4205313676, https://openalex.org/W2888521611, https://openalex.org/W2911323309, https://openalex.org/W2088839951, https://openalex.org/W3118863459, https://openalex.org/W1968894552, https://openalex.org/W2892232092, https://openalex.org/W4407706550, https://openalex.org/W4235073368, https://openalex.org/W2078863042, https://openalex.org/W2503030970, https://openalex.org/W2887517542, https://openalex.org/W3209378707 |
| referenced_works_count | 13 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |