High Dimensional Analysis of Variance in Multivariate Linear Regression Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.04209
In this paper, we develop a systematic theory for high dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new \emph{U}~type test statistic to test linear hypotheses and establish a high dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be applied to deal with the classical one-way multivariate ANOVA and the nonparametric one-way MANOVA in high dimensions. To implement the test procedure in practice, we introduce a sample-splitting based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.04209
- https://arxiv.org/pdf/2301.04209
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4315881228
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4315881228Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.04209Digital Object Identifier
- Title
-
High Dimensional Analysis of Variance in Multivariate Linear RegressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-10Full publication date if available
- Authors
-
Zhipeng Lou, Xianyang Zhang, Wei Biao WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.04209Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.04209Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.04209Direct OA link when available
- Concepts
-
Multivariate analysis of variance, Multivariate statistics, Test statistic, Mathematics, Statistics, Estimator, Statistic, Moment (physics), Nonparametric statistics, Covariance, Dimension (graph theory), Linear model, Linear regression, Gaussian, Econometrics, Statistical hypothesis testing, Combinatorics, Classical mechanics, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4315881228 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.04209 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.04209 |
| ids.openalex | https://openalex.org/W4315881228 |
| fwci | |
| type | preprint |
| title | High Dimensional Analysis of Variance in Multivariate Linear Regression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9918000102043152 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9538000226020813 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C192424360 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7915030121803284 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q929408 |
| concepts[0].display_name | Multivariate analysis of variance |
| concepts[1].id | https://openalex.org/C161584116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7075114846229553 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[1].display_name | Multivariate statistics |
| concepts[2].id | https://openalex.org/C169857963 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6395502686500549 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1461038 |
| concepts[2].display_name | Test statistic |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6221116781234741 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.582263708114624 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5597293376922607 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C89128539 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5458165407180786 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[6].display_name | Statistic |
| concepts[7].id | https://openalex.org/C179254644 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49401646852493286 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13222844 |
| concepts[7].display_name | Moment (physics) |
| concepts[8].id | https://openalex.org/C102366305 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4699549674987793 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[8].display_name | Nonparametric statistics |
| concepts[9].id | https://openalex.org/C178650346 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46906280517578125 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[9].display_name | Covariance |
| concepts[10].id | https://openalex.org/C33676613 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4442482888698578 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[10].display_name | Dimension (graph theory) |
| concepts[11].id | https://openalex.org/C163175372 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42607763409614563 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[11].display_name | Linear model |
| concepts[12].id | https://openalex.org/C48921125 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41441112756729126 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[12].display_name | Linear regression |
| concepts[13].id | https://openalex.org/C163716315 |
| concepts[13].level | 2 |
| concepts[13].score | 0.414200097322464 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[13].display_name | Gaussian |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4120529890060425 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C87007009 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3926829397678375 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[15].display_name | Statistical hypothesis testing |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07671046257019043 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C74650414 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[17].display_name | Classical mechanics |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/multivariate-analysis-of-variance |
| keywords[0].score | 0.7915030121803284 |
| keywords[0].display_name | Multivariate analysis of variance |
| keywords[1].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[1].score | 0.7075114846229553 |
| keywords[1].display_name | Multivariate statistics |
| keywords[2].id | https://openalex.org/keywords/test-statistic |
| keywords[2].score | 0.6395502686500549 |
| keywords[2].display_name | Test statistic |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6221116781234741 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.582263708114624 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.5597293376922607 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/statistic |
| keywords[6].score | 0.5458165407180786 |
| keywords[6].display_name | Statistic |
| keywords[7].id | https://openalex.org/keywords/moment |
| keywords[7].score | 0.49401646852493286 |
| keywords[7].display_name | Moment (physics) |
| keywords[8].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[8].score | 0.4699549674987793 |
| keywords[8].display_name | Nonparametric statistics |
| keywords[9].id | https://openalex.org/keywords/covariance |
| keywords[9].score | 0.46906280517578125 |
| keywords[9].display_name | Covariance |
| keywords[10].id | https://openalex.org/keywords/dimension |
| keywords[10].score | 0.4442482888698578 |
| keywords[10].display_name | Dimension (graph theory) |
| keywords[11].id | https://openalex.org/keywords/linear-model |
| keywords[11].score | 0.42607763409614563 |
| keywords[11].display_name | Linear model |
| keywords[12].id | https://openalex.org/keywords/linear-regression |
| keywords[12].score | 0.41441112756729126 |
| keywords[12].display_name | Linear regression |
| keywords[13].id | https://openalex.org/keywords/gaussian |
| keywords[13].score | 0.414200097322464 |
| keywords[13].display_name | Gaussian |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.4120529890060425 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[15].score | 0.3926829397678375 |
| keywords[15].display_name | Statistical hypothesis testing |
| keywords[16].id | https://openalex.org/keywords/combinatorics |
| keywords[16].score | 0.07671046257019043 |
| keywords[16].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.04209 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.04209 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.04209 |
| locations[1].id | doi:10.48550/arxiv.2301.04209 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.04209 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013258402 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-0421-9313 |
| authorships[0].author.display_name | Zhipeng Lou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lou, Zhipeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102873564 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2512-1816 |
| authorships[1].author.display_name | Xianyang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Xianyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036683934 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4310-9965 |
| authorships[2].author.display_name | Wei Biao Wu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wu, Wei Biao |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.04209 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High Dimensional Analysis of Variance in Multivariate Linear Regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9918000102043152 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W1997747147, https://openalex.org/W4296826658, https://openalex.org/W4251996830, https://openalex.org/W2924932104, https://openalex.org/W2135894974, https://openalex.org/W4297915994, https://openalex.org/W2985158452, https://openalex.org/W2751059730, https://openalex.org/W3015822731, https://openalex.org/W137543016 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.04209 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.04209 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.04209 |
| primary_location.id | pmh:oai:arXiv.org:2301.04209 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.04209 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.04209 |
| publication_date | 2023-01-10 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 106 |
| abstract_inverted_index.a | 5, 35, 46, 90 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.We | 33 |
| abstract_inverted_index.be | 63 |
| abstract_inverted_index.in | 14, 78, 86, 118 |
| abstract_inverted_index.of | 12, 24, 94, 98 |
| abstract_inverted_index.to | 40, 65 |
| abstract_inverted_index.we | 3, 88 |
| abstract_inverted_index.Our | 57 |
| abstract_inverted_index.and | 21, 44, 60, 73, 102 |
| abstract_inverted_index.can | 26, 62 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.its | 104 |
| abstract_inverted_index.new | 36 |
| abstract_inverted_index.our | 111 |
| abstract_inverted_index.the | 19, 22, 30, 68, 74, 83, 95, 99 |
| abstract_inverted_index.both | 27 |
| abstract_inverted_index.deal | 66 |
| abstract_inverted_index.grow | 28 |
| abstract_inverted_index.high | 9, 47, 79 |
| abstract_inverted_index.mild | 54 |
| abstract_inverted_index.some | 115 |
| abstract_inverted_index.test | 38, 41, 84, 113 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 29, 67 |
| abstract_inverted_index.ANOVA | 72 |
| abstract_inverted_index.based | 92 |
| abstract_inverted_index.error | 100 |
| abstract_inverted_index.shows | 109 |
| abstract_inverted_index.size. | 32 |
| abstract_inverted_index.study | 108 |
| abstract_inverted_index.tests | 117 |
| abstract_inverted_index.under | 52 |
| abstract_inverted_index.where | 18 |
| abstract_inverted_index.MANOVA | 77 |
| abstract_inverted_index.fairly | 53 |
| abstract_inverted_index.linear | 16, 42 |
| abstract_inverted_index.moment | 55, 97 |
| abstract_inverted_index.number | 23 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.result | 51 |
| abstract_inverted_index.sample | 31 |
| abstract_inverted_index.second | 96 |
| abstract_inverted_index.theory | 7, 61 |
| abstract_inverted_index.applied | 64 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.discuss | 103 |
| abstract_inverted_index.general | 58 |
| abstract_inverted_index.one-way | 70, 76 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.various | 119 |
| abstract_inverted_index.Gaussian | 49 |
| abstract_inverted_index.analysis | 11 |
| abstract_inverted_index.existing | 116 |
| abstract_inverted_index.proposed | 112 |
| abstract_inverted_index.variance | 13 |
| abstract_inverted_index.classical | 69 |
| abstract_inverted_index.dimension | 20 |
| abstract_inverted_index.establish | 45 |
| abstract_inverted_index.estimator | 93 |
| abstract_inverted_index.framework | 59 |
| abstract_inverted_index.implement | 82 |
| abstract_inverted_index.introduce | 89 |
| abstract_inverted_index.practice, | 87 |
| abstract_inverted_index.procedure | 85 |
| abstract_inverted_index.settings. | 120 |
| abstract_inverted_index.statistic | 39 |
| abstract_inverted_index.covariance | 101 |
| abstract_inverted_index.hypotheses | 43 |
| abstract_inverted_index.simulation | 107 |
| abstract_inverted_index.systematic | 6 |
| abstract_inverted_index.dimensional | 10, 48 |
| abstract_inverted_index.dimensions. | 80 |
| abstract_inverted_index.outperforms | 114 |
| abstract_inverted_index.properties. | 105 |
| abstract_inverted_index.regression, | 17 |
| abstract_inverted_index.assumptions. | 56 |
| abstract_inverted_index.coefficients | 25 |
| abstract_inverted_index.multivariate | 15, 71 |
| abstract_inverted_index.\emph{U}~type | 37 |
| abstract_inverted_index.approximation | 50 |
| abstract_inverted_index.nonparametric | 75 |
| abstract_inverted_index.sample-splitting | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |