High-dimensional false discovery rate control for dependent variables Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.sigpro.2025.109990
Algorithms that ensure reproducible findings from large-scale, high-dimensional data are pivotal in numerous signal processing applications. In recent years, multivariate false discovery rate (FDR) controlling methods have emerged, providing guarantees even in high-dimensional settings where the number of variables surpasses the number of samples. However, these methods often fail to reliably control the FDR in the presence of highly dependent variable groups, a common characteristic in fields such as genomics and finance. To tackle this critical issue, we introduce a novel framework that accounts for general dependency structures. Our proposed dependency-aware T-Rex selector integrates hierarchical graphical models within the T-Rex framework to effectively harness the dependency structure among variables. Leveraging martingale theory, we prove that our variable penalization mechanism ensures FDR control. We further generalize the FDR-controlling framework by stating and proving a clear condition necessary for designing both graphical and non-graphical models that capture dependencies. Numerical experiments and a breast cancer survival analysis use-case demonstrate that the proposed method is the only one among the state-of-the-art benchmark methods that controls the FDR and reliably detects genes that have been previously identified to be related to breast cancer. An open-source implementation is available within the R package TRexSelector on CRAN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.sigpro.2025.109990
- OA Status
- hybrid
- Cited By
- 2
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408476096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408476096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.sigpro.2025.109990Digital Object Identifier
- Title
-
High-dimensional false discovery rate control for dependent variablesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-15Full publication date if available
- Authors
-
Jasin Machkour, Michael Muma, Daniel P. PalomarList of authors in order
- Landing page
-
https://doi.org/10.1016/j.sigpro.2025.109990Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.sigpro.2025.109990Direct OA link when available
- Concepts
-
False discovery rate, Computer science, Mathematics, Biology, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408476096 |
|---|---|
| doi | https://doi.org/10.1016/j.sigpro.2025.109990 |
| ids.doi | https://doi.org/10.1016/j.sigpro.2025.109990 |
| ids.openalex | https://openalex.org/W4408476096 |
| fwci | 14.57534195 |
| type | article |
| title | High-dimensional false discovery rate control for dependent variables |
| biblio.issue | |
| biblio.volume | 234 |
| biblio.last_page | 109990 |
| biblio.first_page | 109990 |
| topics[0].id | https://openalex.org/T11235 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Clinical Trials |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9350000023841858 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list.value | 3200 |
| apc_list.currency | USD |
| apc_list.value_usd | 3200 |
| apc_paid.value | 3200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3200 |
| concepts[0].id | https://openalex.org/C193244246 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8290061950683594 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5432696 |
| concepts[0].display_name | False discovery rate |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4209514856338501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39505189657211304 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.15863266587257385 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C104317684 |
| concepts[4].level | 2 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[4].display_name | Gene |
| concepts[5].id | https://openalex.org/C55493867 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[5].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/false-discovery-rate |
| keywords[0].score | 0.8290061950683594 |
| keywords[0].display_name | False discovery rate |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4209514856338501 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.39505189657211304 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.15863266587257385 |
| keywords[3].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1016/j.sigpro.2025.109990 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S154637859 |
| locations[0].source.issn | 0165-1684, 1872-7557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0165-1684 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Signal Processing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Signal Processing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.sigpro.2025.109990 |
| locations[1].id | pmh:oai:tubiblio.ulb.tu-darmstadt.de:143823 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196390 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | TUbilio (Technical University of Darmstadt) |
| locations[1].source.host_organization | https://openalex.org/I31512782 |
| locations[1].source.host_organization_name | Technical University of Darmstadt |
| locations[1].source.host_organization_lineage | https://openalex.org/I31512782 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | NonPeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://tubiblio.ulb.tu-darmstadt.de/view/person/Machkour=3AJasin=3A=3A.html> |
| locations[2].id | pmh:oai:repository.hkust.edu.hk:1783.1-151461 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://repository.hkust.edu.hk/ir/Record/1783.1-151461 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082516782 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4451-6653 |
| authorships[0].author.display_name | Jasin Machkour |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jasin Machkour |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5068601055 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7983-1944 |
| authorships[1].author.display_name | Michael Muma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Muma |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054606088 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5250-4874 |
| authorships[2].author.display_name | Daniel P. Palomar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daniel P. Palomar |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.sigpro.2025.109990 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-dimensional false discovery rate control for dependent variables |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11235 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Clinical Trials |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2389124870, https://openalex.org/W1921844237, https://openalex.org/W2168149717, https://openalex.org/W200978175, https://openalex.org/W2178204436, https://openalex.org/W2113356685, https://openalex.org/W4300887971 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.sigpro.2025.109990 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S154637859 |
| best_oa_location.source.issn | 0165-1684, 1872-7557 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0165-1684 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Signal Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Signal Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.sigpro.2025.109990 |
| primary_location.id | doi:10.1016/j.sigpro.2025.109990 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S154637859 |
| primary_location.source.issn | 0165-1684, 1872-7557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0165-1684 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Signal Processing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Signal Processing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.sigpro.2025.109990 |
| publication_date | 2025-03-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2154791587, https://openalex.org/W3010491528, https://openalex.org/W2784331297, https://openalex.org/W1998435731, https://openalex.org/W2760945190, https://openalex.org/W1999177119, https://openalex.org/W6737123933, https://openalex.org/W2978891937, https://openalex.org/W2969770677, https://openalex.org/W2136857199, https://openalex.org/W6701881206, https://openalex.org/W3194071783, https://openalex.org/W2749454676, https://openalex.org/W2110065044, https://openalex.org/W1596515083, https://openalex.org/W2109177042, https://openalex.org/W2019634045, https://openalex.org/W2965676676, https://openalex.org/W2963371845, https://openalex.org/W2625479840, https://openalex.org/W6756791829, https://openalex.org/W6787485064, https://openalex.org/W4406320626, https://openalex.org/W6847972767, https://openalex.org/W4385694537, https://openalex.org/W4391420276, https://openalex.org/W4391409105, https://openalex.org/W4404577559, https://openalex.org/W4392903400, https://openalex.org/W2162942021, https://openalex.org/W2169294950, https://openalex.org/W4408352845, https://openalex.org/W2901303766, https://openalex.org/W2082704080, https://openalex.org/W2063978378, https://openalex.org/W2135046866, https://openalex.org/W2122825543, https://openalex.org/W2020925091, https://openalex.org/W6683221057, https://openalex.org/W2230320310, https://openalex.org/W2179438025, https://openalex.org/W2083972068, https://openalex.org/W2157076315, https://openalex.org/W2969698477, https://openalex.org/W2121887268, https://openalex.org/W3209578806, https://openalex.org/W4404608841, https://openalex.org/W2329659234, https://openalex.org/W2744947029, https://openalex.org/W645058498, https://openalex.org/W4213329519, https://openalex.org/W4230058301, https://openalex.org/W2158703410, https://openalex.org/W4399612546, https://openalex.org/W3102479286, https://openalex.org/W3103223646, https://openalex.org/W4211079158 |
| referenced_works_count | 57 |
| abstract_inverted_index.R | 195 |
| abstract_inverted_index.a | 62, 79, 132, 149 |
| abstract_inverted_index.An | 188 |
| abstract_inverted_index.In | 16 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.We | 122 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.be | 183 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.in | 11, 31, 54, 65 |
| abstract_inverted_index.is | 160, 191 |
| abstract_inverted_index.of | 37, 42, 57 |
| abstract_inverted_index.on | 198 |
| abstract_inverted_index.to | 49, 101, 182, 185 |
| abstract_inverted_index.we | 77, 112 |
| abstract_inverted_index.FDR | 53, 120, 172 |
| abstract_inverted_index.Our | 88 |
| abstract_inverted_index.and | 70, 130, 140, 148, 173 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.for | 84, 136 |
| abstract_inverted_index.one | 163 |
| abstract_inverted_index.our | 115 |
| abstract_inverted_index.the | 35, 40, 52, 55, 98, 104, 125, 157, 161, 165, 171, 194 |
| abstract_inverted_index.been | 179 |
| abstract_inverted_index.both | 138 |
| abstract_inverted_index.data | 8 |
| abstract_inverted_index.even | 30 |
| abstract_inverted_index.fail | 48 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.have | 26, 178 |
| abstract_inverted_index.only | 162 |
| abstract_inverted_index.rate | 22 |
| abstract_inverted_index.such | 67 |
| abstract_inverted_index.that | 1, 82, 114, 143, 156, 169, 177 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.(FDR) | 23 |
| abstract_inverted_index.CRAN. | 199 |
| abstract_inverted_index.T-Rex | 91, 99 |
| abstract_inverted_index.among | 107, 164 |
| abstract_inverted_index.clear | 133 |
| abstract_inverted_index.false | 20 |
| abstract_inverted_index.genes | 176 |
| abstract_inverted_index.novel | 80 |
| abstract_inverted_index.often | 47 |
| abstract_inverted_index.prove | 113 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.where | 34 |
| abstract_inverted_index.breast | 150, 186 |
| abstract_inverted_index.cancer | 151 |
| abstract_inverted_index.common | 63 |
| abstract_inverted_index.ensure | 2 |
| abstract_inverted_index.fields | 66 |
| abstract_inverted_index.highly | 58 |
| abstract_inverted_index.issue, | 76 |
| abstract_inverted_index.method | 159 |
| abstract_inverted_index.models | 96, 142 |
| abstract_inverted_index.number | 36, 41 |
| abstract_inverted_index.recent | 17 |
| abstract_inverted_index.signal | 13 |
| abstract_inverted_index.tackle | 73 |
| abstract_inverted_index.within | 97, 193 |
| abstract_inverted_index.years, | 18 |
| abstract_inverted_index.cancer. | 187 |
| abstract_inverted_index.capture | 144 |
| abstract_inverted_index.control | 51 |
| abstract_inverted_index.detects | 175 |
| abstract_inverted_index.ensures | 119 |
| abstract_inverted_index.further | 123 |
| abstract_inverted_index.general | 85 |
| abstract_inverted_index.groups, | 61 |
| abstract_inverted_index.harness | 103 |
| abstract_inverted_index.methods | 25, 46, 168 |
| abstract_inverted_index.package | 196 |
| abstract_inverted_index.pivotal | 10 |
| abstract_inverted_index.proving | 131 |
| abstract_inverted_index.related | 184 |
| abstract_inverted_index.stating | 129 |
| abstract_inverted_index.theory, | 111 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.accounts | 83 |
| abstract_inverted_index.analysis | 153 |
| abstract_inverted_index.control. | 121 |
| abstract_inverted_index.controls | 170 |
| abstract_inverted_index.critical | 75 |
| abstract_inverted_index.emerged, | 27 |
| abstract_inverted_index.finance. | 71 |
| abstract_inverted_index.findings | 4 |
| abstract_inverted_index.genomics | 69 |
| abstract_inverted_index.numerous | 12 |
| abstract_inverted_index.presence | 56 |
| abstract_inverted_index.proposed | 89, 158 |
| abstract_inverted_index.reliably | 50, 174 |
| abstract_inverted_index.samples. | 43 |
| abstract_inverted_index.selector | 92 |
| abstract_inverted_index.settings | 33 |
| abstract_inverted_index.survival | 152 |
| abstract_inverted_index.use-case | 154 |
| abstract_inverted_index.variable | 60, 116 |
| abstract_inverted_index.Numerical | 146 |
| abstract_inverted_index.available | 192 |
| abstract_inverted_index.benchmark | 167 |
| abstract_inverted_index.condition | 134 |
| abstract_inverted_index.dependent | 59 |
| abstract_inverted_index.designing | 137 |
| abstract_inverted_index.discovery | 21 |
| abstract_inverted_index.framework | 81, 100, 127 |
| abstract_inverted_index.graphical | 95, 139 |
| abstract_inverted_index.introduce | 78 |
| abstract_inverted_index.mechanism | 118 |
| abstract_inverted_index.necessary | 135 |
| abstract_inverted_index.providing | 28 |
| abstract_inverted_index.structure | 106 |
| abstract_inverted_index.surpasses | 39 |
| abstract_inverted_index.variables | 38 |
| abstract_inverted_index.Algorithms | 0 |
| abstract_inverted_index.Leveraging | 109 |
| abstract_inverted_index.dependency | 86, 105 |
| abstract_inverted_index.generalize | 124 |
| abstract_inverted_index.guarantees | 29 |
| abstract_inverted_index.identified | 181 |
| abstract_inverted_index.integrates | 93 |
| abstract_inverted_index.martingale | 110 |
| abstract_inverted_index.previously | 180 |
| abstract_inverted_index.processing | 14 |
| abstract_inverted_index.variables. | 108 |
| abstract_inverted_index.controlling | 24 |
| abstract_inverted_index.demonstrate | 155 |
| abstract_inverted_index.effectively | 102 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.open-source | 189 |
| abstract_inverted_index.structures. | 87 |
| abstract_inverted_index.TRexSelector | 197 |
| abstract_inverted_index.hierarchical | 94 |
| abstract_inverted_index.large-scale, | 6 |
| abstract_inverted_index.multivariate | 19 |
| abstract_inverted_index.penalization | 117 |
| abstract_inverted_index.reproducible | 3 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.dependencies. | 145 |
| abstract_inverted_index.non-graphical | 141 |
| abstract_inverted_index.characteristic | 64 |
| abstract_inverted_index.implementation | 190 |
| abstract_inverted_index.FDR-controlling | 126 |
| abstract_inverted_index.dependency-aware | 90 |
| abstract_inverted_index.high-dimensional | 7, 32 |
| abstract_inverted_index.state-of-the-art | 166 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.96563211 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |