High-Fidelity Data-Driven Dynamics Model for Reinforcement Learning-based Control in HL-3 Tokamak Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.09238
The success of reinforcement learning (RL)-based control in tokamaks, an emerging technique for controlled nuclear fusion with improved flexibility, typically requires substantial interaction with a simulator capable of accurately evolving the high-dimensional plasma state. Compared to first-principle-based simulators, whose intense computations lead to sluggish RL training, we devise an effective method to acquire a fully data-driven simulator, by mitigating the arising compounding error issue due to the underlying autoregressive nature. With high accuracy and appealing extrapolation capability, this high-fidelity dynamics model subsequently enables the rapid training of a qualified RL agent to directly generate engineering-reasonable actuator commands, aiming at the desired long-term targets of plasma configuration. Together with a surrogate model for Equilibrium Fitting code based on neural network, named EFITNN, the RL agent successfully maintains a 400-ms, 1 kHz trajectory control with accurate waveform tracking of plasma current and last closed flux surface on the HL-3 tokamak. Furthermore, it also demonstrates the feasibility of zero-shot adaptation to changed triangularity targets, confirming the robustness of the developed data-driven dynamics model. Our work underscores the advantage of fully data-driven dynamics models in yielding RL-based trajectory control policies at a sufficiently fast pace, an anticipated engineering requirement in daily discharge practices for the upcoming ITER device.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.09238
- https://arxiv.org/pdf/2409.09238
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403662562
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403662562Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.09238Digital Object Identifier
- Title
-
High-Fidelity Data-Driven Dynamics Model for Reinforcement Learning-based Control in HL-3 TokamakWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-14Full publication date if available
- Authors
-
Ni Wu, Zongyu Yang, Rongpeng Li, Ning Wei, Yihang Chen, Qianyun Dong, Jiyuan Li, Guohui Zheng, Xinwen Gong, Fei Gao, Bo Li, Min Xu, Zhifeng Zhao, W.L. ZhongList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.09238Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.09238Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.09238Direct OA link when available
- Concepts
-
Tokamak, Reinforcement learning, Fidelity, Dynamics (music), Computer science, Control (management), High fidelity, Artificial intelligence, Physics, Plasma, Nuclear physics, Telecommunications, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403662562 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.09238 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.09238 |
| ids.openalex | https://openalex.org/W4403662562 |
| fwci | |
| type | preprint |
| title | High-Fidelity Data-Driven Dynamics Model for Reinforcement Learning-based Control in HL-3 Tokamak |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11993 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9732999801635742 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Atomic and Subatomic Physics Research |
| topics[1].id | https://openalex.org/T10346 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9585000276565552 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Magnetic confinement fusion research |
| topics[2].id | https://openalex.org/T11808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9416000247001648 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Superconducting Materials and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116515362 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8332372903823853 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188589 |
| concepts[0].display_name | Tokamak |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6619940996170044 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C2776459999 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6216685175895691 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[2].display_name | Fidelity |
| concepts[3].id | https://openalex.org/C145912823 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5662282109260559 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[3].display_name | Dynamics (music) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4602879583835602 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2775924081 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4588506817817688 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[5].display_name | Control (management) |
| concepts[6].id | https://openalex.org/C113364801 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4306311011314392 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[6].display_name | High fidelity |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32541796565055847 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.28282564878463745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C82706917 |
| concepts[9].level | 2 |
| concepts[9].score | 0.21163761615753174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10251 |
| concepts[9].display_name | Plasma |
| concepts[10].id | https://openalex.org/C185544564 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1878921091556549 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[10].display_name | Nuclear physics |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/tokamak |
| keywords[0].score | 0.8332372903823853 |
| keywords[0].display_name | Tokamak |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6619940996170044 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/fidelity |
| keywords[2].score | 0.6216685175895691 |
| keywords[2].display_name | Fidelity |
| keywords[3].id | https://openalex.org/keywords/dynamics |
| keywords[3].score | 0.5662282109260559 |
| keywords[3].display_name | Dynamics (music) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4602879583835602 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/control |
| keywords[5].score | 0.4588506817817688 |
| keywords[5].display_name | Control (management) |
| keywords[6].id | https://openalex.org/keywords/high-fidelity |
| keywords[6].score | 0.4306311011314392 |
| keywords[6].display_name | High fidelity |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.32541796565055847 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.28282564878463745 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/plasma |
| keywords[9].score | 0.21163761615753174 |
| keywords[9].display_name | Plasma |
| keywords[10].id | https://openalex.org/keywords/nuclear-physics |
| keywords[10].score | 0.1878921091556549 |
| keywords[10].display_name | Nuclear physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.09238 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.09238 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.09238 |
| locations[1].id | doi:10.48550/arxiv.2409.09238 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.09238 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103176967 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3026-2805 |
| authorships[0].author.display_name | Ni Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Niannian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112738999 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zongyu Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Zongyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014842979 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4297-5060 |
| authorships[2].author.display_name | Rongpeng Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Rongpeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5090212300 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3936-7526 |
| authorships[3].author.display_name | Ning Wei |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei, Ning |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101746971 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1127-1570 |
| authorships[4].author.display_name | Yihang Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Yihang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114234231 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Qianyun Dong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dong, Qianyun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100645778 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9133-437X |
| authorships[6].author.display_name | Jiyuan Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Li, Jiyuan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5077867194 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Guohui Zheng |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zheng, Guohui |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5102674024 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Xinwen Gong |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Gong, Xinwen |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5006918284 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-9076-9718 |
| authorships[9].author.display_name | Fei Gao |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Gao, Feng |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100448709 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-3372-7762 |
| authorships[10].author.display_name | Bo Li |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Li, Bo |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5101891282 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5952-0794 |
| authorships[11].author.display_name | Min Xu |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Xu, Min |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5036831868 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-5479-7890 |
| authorships[12].author.display_name | Zhifeng Zhao |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Zhao, Zhifeng |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5031496063 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-8217-9400 |
| authorships[13].author.display_name | W.L. Zhong |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Zhong, Wulyu |
| authorships[13].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.09238 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-23T00:00:00 |
| display_name | High-Fidelity Data-Driven Dynamics Model for Reinforcement Learning-based Control in HL-3 Tokamak |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11993 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9732999801635742 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Atomic and Subatomic Physics Research |
| related_works | https://openalex.org/W4313443006, https://openalex.org/W2945374968, https://openalex.org/W4385452045, https://openalex.org/W4293777179, https://openalex.org/W2164070813, https://openalex.org/W2135608140, https://openalex.org/W2895525995, https://openalex.org/W4224231624, https://openalex.org/W2332512904, https://openalex.org/W2319626700 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.09238 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.09238 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.09238 |
| primary_location.id | pmh:oai:arXiv.org:2409.09238 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.09238 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.09238 |
| publication_date | 2024-09-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 128 |
| abstract_inverted_index.a | 24, 53, 87, 108, 126, 187 |
| abstract_inverted_index.RL | 44, 89, 122 |
| abstract_inverted_index.an | 9, 48, 191 |
| abstract_inverted_index.at | 98, 186 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 7, 180, 195 |
| abstract_inverted_index.it | 149 |
| abstract_inverted_index.of | 2, 27, 86, 103, 136, 154, 164, 175 |
| abstract_inverted_index.on | 116, 144 |
| abstract_inverted_index.to | 35, 42, 51, 65, 91, 157 |
| abstract_inverted_index.we | 46 |
| abstract_inverted_index.Our | 170 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 73, 139 |
| abstract_inverted_index.due | 64 |
| abstract_inverted_index.for | 12, 111, 199 |
| abstract_inverted_index.kHz | 129 |
| abstract_inverted_index.the | 30, 59, 66, 83, 99, 121, 145, 152, 162, 165, 173, 200 |
| abstract_inverted_index.HL-3 | 146 |
| abstract_inverted_index.ITER | 202 |
| abstract_inverted_index.With | 70 |
| abstract_inverted_index.also | 150 |
| abstract_inverted_index.code | 114 |
| abstract_inverted_index.fast | 189 |
| abstract_inverted_index.flux | 142 |
| abstract_inverted_index.high | 71 |
| abstract_inverted_index.last | 140 |
| abstract_inverted_index.lead | 41 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.with | 16, 23, 107, 132 |
| abstract_inverted_index.work | 171 |
| abstract_inverted_index.agent | 90, 123 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.daily | 196 |
| abstract_inverted_index.error | 62 |
| abstract_inverted_index.fully | 54, 176 |
| abstract_inverted_index.issue | 63 |
| abstract_inverted_index.model | 80, 110 |
| abstract_inverted_index.named | 119 |
| abstract_inverted_index.pace, | 190 |
| abstract_inverted_index.rapid | 84 |
| abstract_inverted_index.whose | 38 |
| abstract_inverted_index.aiming | 97 |
| abstract_inverted_index.closed | 141 |
| abstract_inverted_index.devise | 47 |
| abstract_inverted_index.fusion | 15 |
| abstract_inverted_index.method | 50 |
| abstract_inverted_index.model. | 169 |
| abstract_inverted_index.models | 179 |
| abstract_inverted_index.neural | 117 |
| abstract_inverted_index.plasma | 32, 104, 137 |
| abstract_inverted_index.state. | 33 |
| abstract_inverted_index.400-ms, | 127 |
| abstract_inverted_index.EFITNN, | 120 |
| abstract_inverted_index.Fitting | 113 |
| abstract_inverted_index.acquire | 52 |
| abstract_inverted_index.arising | 60 |
| abstract_inverted_index.capable | 26 |
| abstract_inverted_index.changed | 158 |
| abstract_inverted_index.control | 6, 131, 184 |
| abstract_inverted_index.current | 138 |
| abstract_inverted_index.desired | 100 |
| abstract_inverted_index.device. | 203 |
| abstract_inverted_index.enables | 82 |
| abstract_inverted_index.intense | 39 |
| abstract_inverted_index.nature. | 69 |
| abstract_inverted_index.nuclear | 14 |
| abstract_inverted_index.success | 1 |
| abstract_inverted_index.surface | 143 |
| abstract_inverted_index.targets | 102 |
| abstract_inverted_index.Compared | 34 |
| abstract_inverted_index.RL-based | 182 |
| abstract_inverted_index.Together | 106 |
| abstract_inverted_index.accuracy | 72 |
| abstract_inverted_index.accurate | 133 |
| abstract_inverted_index.actuator | 95 |
| abstract_inverted_index.directly | 92 |
| abstract_inverted_index.dynamics | 79, 168, 178 |
| abstract_inverted_index.emerging | 10 |
| abstract_inverted_index.evolving | 29 |
| abstract_inverted_index.generate | 93 |
| abstract_inverted_index.improved | 17 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.network, | 118 |
| abstract_inverted_index.policies | 185 |
| abstract_inverted_index.requires | 20 |
| abstract_inverted_index.sluggish | 43 |
| abstract_inverted_index.targets, | 160 |
| abstract_inverted_index.tokamak. | 147 |
| abstract_inverted_index.tracking | 135 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.upcoming | 201 |
| abstract_inverted_index.waveform | 134 |
| abstract_inverted_index.yielding | 181 |
| abstract_inverted_index.advantage | 174 |
| abstract_inverted_index.appealing | 74 |
| abstract_inverted_index.commands, | 96 |
| abstract_inverted_index.developed | 166 |
| abstract_inverted_index.discharge | 197 |
| abstract_inverted_index.effective | 49 |
| abstract_inverted_index.long-term | 101 |
| abstract_inverted_index.maintains | 125 |
| abstract_inverted_index.practices | 198 |
| abstract_inverted_index.qualified | 88 |
| abstract_inverted_index.simulator | 25 |
| abstract_inverted_index.surrogate | 109 |
| abstract_inverted_index.technique | 11 |
| abstract_inverted_index.tokamaks, | 8 |
| abstract_inverted_index.training, | 45 |
| abstract_inverted_index.typically | 19 |
| abstract_inverted_index.zero-shot | 155 |
| abstract_inverted_index.(RL)-based | 5 |
| abstract_inverted_index.accurately | 28 |
| abstract_inverted_index.adaptation | 156 |
| abstract_inverted_index.confirming | 161 |
| abstract_inverted_index.controlled | 13 |
| abstract_inverted_index.mitigating | 58 |
| abstract_inverted_index.robustness | 163 |
| abstract_inverted_index.simulator, | 56 |
| abstract_inverted_index.trajectory | 130, 183 |
| abstract_inverted_index.underlying | 67 |
| abstract_inverted_index.Equilibrium | 112 |
| abstract_inverted_index.anticipated | 192 |
| abstract_inverted_index.capability, | 76 |
| abstract_inverted_index.compounding | 61 |
| abstract_inverted_index.data-driven | 55, 167, 177 |
| abstract_inverted_index.engineering | 193 |
| abstract_inverted_index.feasibility | 153 |
| abstract_inverted_index.interaction | 22 |
| abstract_inverted_index.requirement | 194 |
| abstract_inverted_index.simulators, | 37 |
| abstract_inverted_index.substantial | 21 |
| abstract_inverted_index.underscores | 172 |
| abstract_inverted_index.Furthermore, | 148 |
| abstract_inverted_index.computations | 40 |
| abstract_inverted_index.demonstrates | 151 |
| abstract_inverted_index.flexibility, | 18 |
| abstract_inverted_index.subsequently | 81 |
| abstract_inverted_index.successfully | 124 |
| abstract_inverted_index.sufficiently | 188 |
| abstract_inverted_index.extrapolation | 75 |
| abstract_inverted_index.high-fidelity | 78 |
| abstract_inverted_index.reinforcement | 3 |
| abstract_inverted_index.triangularity | 159 |
| abstract_inverted_index.autoregressive | 68 |
| abstract_inverted_index.configuration. | 105 |
| abstract_inverted_index.high-dimensional | 31 |
| abstract_inverted_index.first-principle-based | 36 |
| abstract_inverted_index.engineering-reasonable | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile |