High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion Training Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.05492
The development of machine learning for cardiac care is severely hampered by privacy restrictions on sharing real patient electrocardiogram (ECG) data. Although generative AI offers a promising solution, the real-world use of existing model-synthesized ECGs is limited by persistent gaps in trustworthiness and clinical utility. In this work, we address two major shortcomings of current generative ECG methods: insufficient morphological fidelity and the inability to generate personalized, patient-specific physiological signals. To address these gaps, we build on a conditional diffusion-based Structured State Space Model (SSSD-ECG) with two principled innovations: (1) MIDT-ECG (Mel-Spectrogram Informed Diffusion Training), a novel training paradigm with time-frequency domain supervision to enforce physiological structural realism, and (2) multi-modal demographic conditioning to enable patient-specific synthesis. We comprehensively evaluate our approach on the PTB-XL dataset, assessing the synthesized ECG signals on fidelity, clinical coherence, privacy preservation, and downstream task utility. MIDT-ECG achieves substantial gains: it improves morphological coherence, preserves strong privacy guarantees with all metrics evaluated exceeding the baseline by 4-8%, and notably reduces the interlead correlation error by an average of 74%, while demographic conditioning enhances signal-to-noise ratio and personalization. In critical low-data regimes, a classifier trained on datasets supplemented with our synthetic ECGs achieves performance comparable to a classifier trained solely on real data. Together, we demonstrate that ECG synthesizers, trained with the proposed time-frequency structural regularization scheme, can serve as personalized, high-fidelity, privacy-preserving surrogates when real data are scarce, advancing the responsible use of generative AI in healthcare.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.05492
- https://arxiv.org/pdf/2510.05492
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414977074
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414977074Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.05492Digital Object Identifier
- Title
-
High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Zhuoyi Huang, Narayan Sahoo, Anamika Kumari, Girish Kumar, Kai Cai, Shixing Cao, Yue Kang, Tian Xia, S. Chatterjee, Nicholas Hausman, Antoine Jay, Eric S. Rosenthal, Soundar Srinivasan, Alex Fedorov, Sadid A. Hasan, Sulaiman VesalList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.05492Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.05492Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.05492Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414977074 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.05492 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.05492 |
| ids.openalex | https://openalex.org/W4414977074 |
| fwci | |
| type | preprint |
| title | High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.7670000195503235 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.05492 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.05492 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.05492 |
| locations[1].id | doi:10.48550/arxiv.2510.05492 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.05492 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115596676 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhuoyi Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Zhuoyi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101991133 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1497-4327 |
| authorships[1].author.display_name | Narayan Sahoo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sahoo, Nutan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103098416 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8431-0951 |
| authorships[2].author.display_name | Anamika Kumari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kumari, Anamika |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5104246455 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Girish Kumar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kumar, Girish |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036466435 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8784-0728 |
| authorships[4].author.display_name | Kai Cai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cai, Kexuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5000124133 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Shixing Cao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cao, Shixing |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101579074 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5301-0523 |
| authorships[6].author.display_name | Yue Kang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kang, Yue |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5053873921 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1527-2194 |
| authorships[7].author.display_name | Tian Xia |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xia, Tian |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5114377741 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2660-0349 |
| authorships[8].author.display_name | S. Chatterjee |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chatterjee, Somya |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5119914028 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Nicholas Hausman |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Hausman, Nicholas |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5067605601 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0361-5866 |
| authorships[10].author.display_name | Antoine Jay |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jay, Aidan |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5073464972 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3900-356X |
| authorships[11].author.display_name | Eric S. Rosenthal |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Rosenthal, Eric S. |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5111326380 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Soundar Srinivasan |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Srinivasan, Soundar |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5059928810 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-0350-9449 |
| authorships[13].author.display_name | Alex Fedorov |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Fedorov, Alex |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5103789387 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-5665-7752 |
| authorships[14].author.display_name | Sadid A. Hasan |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Hasan, Sadid |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5010990212 |
| authorships[15].author.orcid | https://orcid.org/0000-0001-6156-9338 |
| authorships[15].author.display_name | Sulaiman Vesal |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Vesal, Sulaiman |
| authorships[15].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.05492 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.7670000195503235 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.05492 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.05492 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.05492 |
| primary_location.id | pmh:oai:arXiv.org:2510.05492 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.05492 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.05492 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 77, 95, 186, 200 |
| abstract_inverted_index.AI | 23, 239 |
| abstract_inverted_index.In | 45, 182 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.an | 170 |
| abstract_inverted_index.as | 223 |
| abstract_inverted_index.by | 11, 37, 160, 169 |
| abstract_inverted_index.in | 40, 240 |
| abstract_inverted_index.is | 8, 35 |
| abstract_inverted_index.it | 145 |
| abstract_inverted_index.of | 2, 31, 53, 172, 237 |
| abstract_inverted_index.on | 14, 76, 122, 131, 189, 204 |
| abstract_inverted_index.to | 64, 103, 113, 199 |
| abstract_inverted_index.we | 48, 74, 208 |
| abstract_inverted_index.(1) | 89 |
| abstract_inverted_index.(2) | 109 |
| abstract_inverted_index.ECG | 56, 129, 211 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 154 |
| abstract_inverted_index.and | 42, 61, 108, 137, 162, 180 |
| abstract_inverted_index.are | 231 |
| abstract_inverted_index.can | 221 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.our | 120, 193 |
| abstract_inverted_index.the | 28, 62, 123, 127, 158, 165, 215, 234 |
| abstract_inverted_index.two | 50, 86 |
| abstract_inverted_index.use | 30, 236 |
| abstract_inverted_index.74%, | 173 |
| abstract_inverted_index.ECGs | 34, 195 |
| abstract_inverted_index.care | 7 |
| abstract_inverted_index.data | 230 |
| abstract_inverted_index.gaps | 39 |
| abstract_inverted_index.real | 16, 205, 229 |
| abstract_inverted_index.task | 139 |
| abstract_inverted_index.that | 210 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.when | 228 |
| abstract_inverted_index.with | 85, 99, 153, 192, 214 |
| abstract_inverted_index.(ECG) | 19 |
| abstract_inverted_index.4-8%, | 161 |
| abstract_inverted_index.Model | 83 |
| abstract_inverted_index.Space | 82 |
| abstract_inverted_index.State | 81 |
| abstract_inverted_index.build | 75 |
| abstract_inverted_index.data. | 20, 206 |
| abstract_inverted_index.error | 168 |
| abstract_inverted_index.gaps, | 73 |
| abstract_inverted_index.major | 51 |
| abstract_inverted_index.novel | 96 |
| abstract_inverted_index.ratio | 179 |
| abstract_inverted_index.serve | 222 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.while | 174 |
| abstract_inverted_index.work, | 47 |
| abstract_inverted_index.PTB-XL | 124 |
| abstract_inverted_index.domain | 101 |
| abstract_inverted_index.enable | 114 |
| abstract_inverted_index.gains: | 144 |
| abstract_inverted_index.offers | 24 |
| abstract_inverted_index.solely | 203 |
| abstract_inverted_index.strong | 150 |
| abstract_inverted_index.address | 49, 71 |
| abstract_inverted_index.average | 171 |
| abstract_inverted_index.cardiac | 6 |
| abstract_inverted_index.current | 54 |
| abstract_inverted_index.enforce | 104 |
| abstract_inverted_index.limited | 36 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.metrics | 155 |
| abstract_inverted_index.notably | 163 |
| abstract_inverted_index.patient | 17 |
| abstract_inverted_index.privacy | 12, 135, 151 |
| abstract_inverted_index.reduces | 164 |
| abstract_inverted_index.scarce, | 232 |
| abstract_inverted_index.scheme, | 220 |
| abstract_inverted_index.sharing | 15 |
| abstract_inverted_index.signals | 130 |
| abstract_inverted_index.trained | 188, 202, 213 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.Informed | 92 |
| abstract_inverted_index.MIDT-ECG | 90, 141 |
| abstract_inverted_index.achieves | 142, 196 |
| abstract_inverted_index.approach | 121 |
| abstract_inverted_index.baseline | 159 |
| abstract_inverted_index.clinical | 43, 133 |
| abstract_inverted_index.critical | 183 |
| abstract_inverted_index.dataset, | 125 |
| abstract_inverted_index.datasets | 190 |
| abstract_inverted_index.enhances | 177 |
| abstract_inverted_index.evaluate | 119 |
| abstract_inverted_index.existing | 32 |
| abstract_inverted_index.fidelity | 60 |
| abstract_inverted_index.generate | 65 |
| abstract_inverted_index.hampered | 10 |
| abstract_inverted_index.improves | 146 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.low-data | 184 |
| abstract_inverted_index.methods: | 57 |
| abstract_inverted_index.paradigm | 98 |
| abstract_inverted_index.proposed | 216 |
| abstract_inverted_index.realism, | 107 |
| abstract_inverted_index.regimes, | 185 |
| abstract_inverted_index.severely | 9 |
| abstract_inverted_index.signals. | 69 |
| abstract_inverted_index.training | 97 |
| abstract_inverted_index.utility. | 44, 140 |
| abstract_inverted_index.Diffusion | 93 |
| abstract_inverted_index.Together, | 207 |
| abstract_inverted_index.advancing | 233 |
| abstract_inverted_index.assessing | 126 |
| abstract_inverted_index.evaluated | 156 |
| abstract_inverted_index.exceeding | 157 |
| abstract_inverted_index.fidelity, | 132 |
| abstract_inverted_index.inability | 63 |
| abstract_inverted_index.interlead | 166 |
| abstract_inverted_index.preserves | 149 |
| abstract_inverted_index.promising | 26 |
| abstract_inverted_index.solution, | 27 |
| abstract_inverted_index.synthetic | 194 |
| abstract_inverted_index.(SSSD-ECG) | 84 |
| abstract_inverted_index.Structured | 80 |
| abstract_inverted_index.Training), | 94 |
| abstract_inverted_index.classifier | 187, 201 |
| abstract_inverted_index.coherence, | 134, 148 |
| abstract_inverted_index.comparable | 198 |
| abstract_inverted_index.downstream | 138 |
| abstract_inverted_index.generative | 22, 55, 238 |
| abstract_inverted_index.guarantees | 152 |
| abstract_inverted_index.persistent | 38 |
| abstract_inverted_index.principled | 87 |
| abstract_inverted_index.real-world | 29 |
| abstract_inverted_index.structural | 106, 218 |
| abstract_inverted_index.surrogates | 227 |
| abstract_inverted_index.synthesis. | 116 |
| abstract_inverted_index.conditional | 78 |
| abstract_inverted_index.correlation | 167 |
| abstract_inverted_index.demographic | 111, 175 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.development | 1 |
| abstract_inverted_index.healthcare. | 241 |
| abstract_inverted_index.multi-modal | 110 |
| abstract_inverted_index.performance | 197 |
| abstract_inverted_index.responsible | 235 |
| abstract_inverted_index.substantial | 143 |
| abstract_inverted_index.supervision | 102 |
| abstract_inverted_index.synthesized | 128 |
| abstract_inverted_index.conditioning | 112, 176 |
| abstract_inverted_index.innovations: | 88 |
| abstract_inverted_index.insufficient | 58 |
| abstract_inverted_index.restrictions | 13 |
| abstract_inverted_index.shortcomings | 52 |
| abstract_inverted_index.supplemented | 191 |
| abstract_inverted_index.morphological | 59, 147 |
| abstract_inverted_index.personalized, | 66, 224 |
| abstract_inverted_index.physiological | 68, 105 |
| abstract_inverted_index.preservation, | 136 |
| abstract_inverted_index.synthesizers, | 212 |
| abstract_inverted_index.high-fidelity, | 225 |
| abstract_inverted_index.regularization | 219 |
| abstract_inverted_index.time-frequency | 100, 217 |
| abstract_inverted_index.comprehensively | 118 |
| abstract_inverted_index.diffusion-based | 79 |
| abstract_inverted_index.signal-to-noise | 178 |
| abstract_inverted_index.trustworthiness | 41 |
| abstract_inverted_index.(Mel-Spectrogram | 91 |
| abstract_inverted_index.patient-specific | 67, 115 |
| abstract_inverted_index.personalization. | 181 |
| abstract_inverted_index.electrocardiogram | 18 |
| abstract_inverted_index.model-synthesized | 33 |
| abstract_inverted_index.privacy-preserving | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 16 |
| citation_normalized_percentile |