High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.eqrea.2024.100357
Ambient noise tomography is an established technique in seismology, where calculating single- or nine-component noise cross-correlation functions (NCFs) is a fundamental first step. In this study, we introduced a novel CPU-GPU heterogeneous computing framework designed to significantly enhance the efficiency of computing 9-component NCFs from seismic ambient noise data. This framework not only accelerated the computational process by leveraging the Compute Unified Device Architecture (CUDA) but also improved the signal-to-noise ratio (SNR) through innovative stacking techniques, such as time-frequency domain phase-weighted stacking (tf-PWS). We validated the program using multiple datasets, confirming its superior computation speed, improved reliability, and higher signal-to-noise ratios for NCFs. Our comprehensive study provides detailed insights into optimizing the computational processes for noise cross-correlation functions, thereby enhancing the precision and efficiency of ambient noise imaging.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.eqrea.2024.100357
- OA Status
- diamond
- Cited By
- 1
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405970316
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405970316Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.eqrea.2024.100357Digital Object Identifier
- Title
-
High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Jingxi Wang, Wang Weitao, Chao Wu, Lei Jiang, Zou Hanwen, Yao Huajian, Ling ChenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.eqrea.2024.100357Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.eqrea.2024.100357Direct OA link when available
- Concepts
-
Component (thermodynamics), Computer science, Noise (video), Parallel computing, Supercomputer, CUDA, Correlation, Computational science, Artificial intelligence, Mathematics, Physics, Image (mathematics), Thermodynamics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405970316 |
|---|---|
| doi | https://doi.org/10.1016/j.eqrea.2024.100357 |
| ids.doi | https://doi.org/10.1016/j.eqrea.2024.100357 |
| ids.openalex | https://openalex.org/W4405970316 |
| fwci | 4.92056898 |
| type | article |
| title | High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlation |
| biblio.issue | 3 |
| biblio.volume | 5 |
| biblio.last_page | 100357 |
| biblio.first_page | 100357 |
| topics[0].id | https://openalex.org/T11757 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Seismic Waves and Analysis |
| topics[1].id | https://openalex.org/T13018 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9872999787330627 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Seismology and Earthquake Studies |
| topics[2].id | https://openalex.org/T10160 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Seismic Performance and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C168167062 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6867890954017639 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[0].display_name | Component (thermodynamics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6864607930183411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5932268500328064 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C173608175 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5273593068122864 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[3].display_name | Parallel computing |
| concepts[4].id | https://openalex.org/C83283714 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44549867510795593 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q121117 |
| concepts[4].display_name | Supercomputer |
| concepts[5].id | https://openalex.org/C2778119891 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42932748794555664 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q477690 |
| concepts[5].display_name | CUDA |
| concepts[6].id | https://openalex.org/C117220453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42900320887565613 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[6].display_name | Correlation |
| concepts[7].id | https://openalex.org/C459310 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38191404938697815 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[7].display_name | Computational science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09196525812149048 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07906684279441833 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07794937491416931 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C97355855 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[12].display_name | Thermodynamics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/component |
| keywords[0].score | 0.6867890954017639 |
| keywords[0].display_name | Component (thermodynamics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6864607930183411 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5932268500328064 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/parallel-computing |
| keywords[3].score | 0.5273593068122864 |
| keywords[3].display_name | Parallel computing |
| keywords[4].id | https://openalex.org/keywords/supercomputer |
| keywords[4].score | 0.44549867510795593 |
| keywords[4].display_name | Supercomputer |
| keywords[5].id | https://openalex.org/keywords/cuda |
| keywords[5].score | 0.42932748794555664 |
| keywords[5].display_name | CUDA |
| keywords[6].id | https://openalex.org/keywords/correlation |
| keywords[6].score | 0.42900320887565613 |
| keywords[6].display_name | Correlation |
| keywords[7].id | https://openalex.org/keywords/computational-science |
| keywords[7].score | 0.38191404938697815 |
| keywords[7].display_name | Computational science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.09196525812149048 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.07906684279441833 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.07794937491416931 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1016/j.eqrea.2024.100357 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4393918158 |
| locations[0].source.issn | 2096-9996, 2772-4670 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-9996 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Earthquake research advances |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Earthquake Research Advances |
| locations[0].landing_page_url | https://doi.org/10.1016/j.eqrea.2024.100357 |
| locations[1].id | pmh:oai:doaj.org/article:889c9ff4ccb647cfbfd39f3064c60486 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Earthquake Research Advances, Vol 5, Iss 3, Pp 100357- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/889c9ff4ccb647cfbfd39f3064c60486 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102870843 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-4287-2351 |
| authorships[0].author.display_name | Jingxi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang Jingxi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102373418 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wang Weitao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang Weitao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057422251 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7159-3286 |
| authorships[2].author.display_name | Chao Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu Chao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102010888 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0009-6308 |
| authorships[3].author.display_name | Lei Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiang Lei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5115734667 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zou Hanwen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zou Hanwen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042641799 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yao Huajian |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yao Huajian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100411088 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7170-5954 |
| authorships[6].author.display_name | Ling Chen |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Chen Ling |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.eqrea.2024.100357 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-02T00:00:00 |
| display_name | High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11757 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Seismic Waves and Analysis |
| related_works | https://openalex.org/W4399354997, https://openalex.org/W3062287, https://openalex.org/W3189307731, https://openalex.org/W1582436825, https://openalex.org/W1428699136, https://openalex.org/W2949962288, https://openalex.org/W2364686214, https://openalex.org/W1998560227, https://openalex.org/W1996803181, https://openalex.org/W2979588510 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.eqrea.2024.100357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4393918158 |
| best_oa_location.source.issn | 2096-9996, 2772-4670 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-9996 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Earthquake research advances |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Earthquake Research Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.eqrea.2024.100357 |
| primary_location.id | doi:10.1016/j.eqrea.2024.100357 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4393918158 |
| primary_location.source.issn | 2096-9996, 2772-4670 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-9996 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Earthquake research advances |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Earthquake Research Advances |
| primary_location.landing_page_url | https://doi.org/10.1016/j.eqrea.2024.100357 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2139713088, https://openalex.org/W3089337953, https://openalex.org/W3157033119, https://openalex.org/W2618298910, https://openalex.org/W4323659992, https://openalex.org/W1537855447, https://openalex.org/W2761065641, https://openalex.org/W2141845572, https://openalex.org/W6644786360, https://openalex.org/W6646527458, https://openalex.org/W2109565803, https://openalex.org/W2103068583, https://openalex.org/W2164042589, https://openalex.org/W2065126285, https://openalex.org/W4306739304, https://openalex.org/W2032942522, https://openalex.org/W2131006763, https://openalex.org/W2024225823, https://openalex.org/W2295066318, https://openalex.org/W2892219240, https://openalex.org/W4399589108, https://openalex.org/W6805361866, https://openalex.org/W2094552064, https://openalex.org/W1977504503, https://openalex.org/W2045618492, https://openalex.org/W4315630407, https://openalex.org/W2100721237, https://openalex.org/W1985298050 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 19, 28 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.We | 83 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 3, 18 |
| abstract_inverted_index.of | 40, 124 |
| abstract_inverted_index.or | 12 |
| abstract_inverted_index.to | 35 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.Our | 103 |
| abstract_inverted_index.and | 97, 122 |
| abstract_inverted_index.but | 65 |
| abstract_inverted_index.for | 101, 114 |
| abstract_inverted_index.its | 91 |
| abstract_inverted_index.not | 51 |
| abstract_inverted_index.the | 38, 54, 59, 68, 85, 111, 120 |
| abstract_inverted_index.NCFs | 43 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.also | 66 |
| abstract_inverted_index.from | 44 |
| abstract_inverted_index.into | 109 |
| abstract_inverted_index.only | 52 |
| abstract_inverted_index.such | 76 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.(SNR) | 71 |
| abstract_inverted_index.NCFs. | 102 |
| abstract_inverted_index.data. | 48 |
| abstract_inverted_index.first | 21 |
| abstract_inverted_index.noise | 1, 14, 47, 115, 126 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.ratio | 70 |
| abstract_inverted_index.step. | 22 |
| abstract_inverted_index.study | 105 |
| abstract_inverted_index.using | 87 |
| abstract_inverted_index.where | 9 |
| abstract_inverted_index.(CUDA) | 64 |
| abstract_inverted_index.(NCFs) | 17 |
| abstract_inverted_index.Device | 62 |
| abstract_inverted_index.domain | 79 |
| abstract_inverted_index.higher | 98 |
| abstract_inverted_index.ratios | 100 |
| abstract_inverted_index.speed, | 94 |
| abstract_inverted_index.study, | 25 |
| abstract_inverted_index.Ambient | 0 |
| abstract_inverted_index.CPU-GPU | 30 |
| abstract_inverted_index.Compute | 60 |
| abstract_inverted_index.Unified | 61 |
| abstract_inverted_index.ambient | 46, 125 |
| abstract_inverted_index.enhance | 37 |
| abstract_inverted_index.process | 56 |
| abstract_inverted_index.program | 86 |
| abstract_inverted_index.seismic | 45 |
| abstract_inverted_index.single- | 11 |
| abstract_inverted_index.thereby | 118 |
| abstract_inverted_index.through | 72 |
| abstract_inverted_index.designed | 34 |
| abstract_inverted_index.detailed | 107 |
| abstract_inverted_index.imaging. | 127 |
| abstract_inverted_index.improved | 67, 95 |
| abstract_inverted_index.insights | 108 |
| abstract_inverted_index.multiple | 88 |
| abstract_inverted_index.provides | 106 |
| abstract_inverted_index.stacking | 74, 81 |
| abstract_inverted_index.superior | 92 |
| abstract_inverted_index.(tf-PWS). | 82 |
| abstract_inverted_index.computing | 32, 41 |
| abstract_inverted_index.datasets, | 89 |
| abstract_inverted_index.enhancing | 119 |
| abstract_inverted_index.framework | 33, 50 |
| abstract_inverted_index.functions | 16 |
| abstract_inverted_index.precision | 121 |
| abstract_inverted_index.processes | 113 |
| abstract_inverted_index.technique | 6 |
| abstract_inverted_index.validated | 84 |
| abstract_inverted_index.confirming | 90 |
| abstract_inverted_index.efficiency | 39, 123 |
| abstract_inverted_index.functions, | 117 |
| abstract_inverted_index.innovative | 73 |
| abstract_inverted_index.introduced | 27 |
| abstract_inverted_index.leveraging | 58 |
| abstract_inverted_index.optimizing | 110 |
| abstract_inverted_index.tomography | 2 |
| abstract_inverted_index.9-component | 42 |
| abstract_inverted_index.accelerated | 53 |
| abstract_inverted_index.calculating | 10 |
| abstract_inverted_index.computation | 93 |
| abstract_inverted_index.established | 5 |
| abstract_inverted_index.fundamental | 20 |
| abstract_inverted_index.seismology, | 8 |
| abstract_inverted_index.techniques, | 75 |
| abstract_inverted_index.Architecture | 63 |
| abstract_inverted_index.reliability, | 96 |
| abstract_inverted_index.comprehensive | 104 |
| abstract_inverted_index.computational | 55, 112 |
| abstract_inverted_index.heterogeneous | 31 |
| abstract_inverted_index.significantly | 36 |
| abstract_inverted_index.nine-component | 13 |
| abstract_inverted_index.phase-weighted | 80 |
| abstract_inverted_index.time-frequency | 78 |
| abstract_inverted_index.signal-to-noise | 69, 99 |
| abstract_inverted_index.cross-correlation | 15, 116 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.82746184 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |