High-resolution electric service interruptions map and CBG-level share of population interrupted in Texas during the February 2021 winter storm. Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.7910/dvn/zyjtwj
The data package includes two files: a TIFF file and a CSV file. The TIFF file (raster) represents a binary power interruptions map of the Texas region during the February 2021 winter storm. This map has a spatial resolution of 15 arc-seconds and was generated by detecting power interruptions in a composite nighttime lights image of the Texas region from February 14-18, 2021. Each pixel in the map corresponds to a geographical location and indicates whether an interruption was detected in that location or not. A pixel with a value of 1 represents an interruption, while a pixel with a value of 0 represents no interruption. In most cases, the missing pixels indicate the absence of population, but in some cases, they indicate data unavailability. The dataset also includes a CSV file that provides the estimated share of population in outage in each Census block group (CBG) of the Texas region. This file was created by aggregating pixel-level outage values from the TIFF file to the CBG level. Together, the TIFF and CSV files in the dataset provide a detailed view of the electric service interruptions that were observed across the Texas region during the severe winter storm of February 2021.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/zyjtwj
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398799672
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398799672Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/zyjtwjDigital Object Identifier
- Title
-
High-resolution electric service interruptions map and CBG-level share of population interrupted in Texas during the February 2021 winter storm.Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-24Full publication date if available
- Authors
-
Zeal Shah, Juan Pablo Carvallo, Feng-Chi Hsu, Jay TanejaList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/zyjtwjPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/zyjtwjDirect OA link when available
- Concepts
-
Storm, National weather service, Meteorology, Service (business), Geography, Population, Winter storm, Environmental science, Demography, Business, Sociology, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398799672 |
|---|---|
| doi | https://doi.org/10.7910/dvn/zyjtwj |
| ids.doi | https://doi.org/10.7910/dvn/zyjtwj |
| ids.openalex | https://openalex.org/W4398799672 |
| fwci | |
| type | dataset |
| title | High-resolution electric service interruptions map and CBG-level share of population interrupted in Texas during the February 2021 winter storm. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12451 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8633000254631042 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid and Power Systems |
| topics[1].id | https://openalex.org/T14042 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7746999859809875 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Technology and Security Systems |
| topics[2].id | https://openalex.org/T10787 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.7117000222206116 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Lightning and Electromagnetic Phenomena |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C105306849 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8326891660690308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q81054 |
| concepts[0].display_name | Storm |
| concepts[1].id | https://openalex.org/C2983637589 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49407222867012024 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1066823 |
| concepts[1].display_name | National weather service |
| concepts[2].id | https://openalex.org/C153294291 |
| concepts[2].level | 1 |
| concepts[2].score | 0.47888439893722534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[2].display_name | Meteorology |
| concepts[3].id | https://openalex.org/C2780378061 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4768475294113159 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[3].display_name | Service (business) |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.474923700094223 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C2908647359 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47279852628707886 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[5].display_name | Population |
| concepts[6].id | https://openalex.org/C196937547 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42800483107566833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q75079023 |
| concepts[6].display_name | Winter storm |
| concepts[7].id | https://openalex.org/C39432304 |
| concepts[7].level | 0 |
| concepts[7].score | 0.40261000394821167 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[7].display_name | Environmental science |
| concepts[8].id | https://openalex.org/C149923435 |
| concepts[8].level | 1 |
| concepts[8].score | 0.279636949300766 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[8].display_name | Demography |
| concepts[9].id | https://openalex.org/C144133560 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11816507577896118 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[9].display_name | Business |
| concepts[10].id | https://openalex.org/C144024400 |
| concepts[10].level | 0 |
| concepts[10].score | 0.06003120541572571 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[10].display_name | Sociology |
| concepts[11].id | https://openalex.org/C162853370 |
| concepts[11].level | 1 |
| concepts[11].score | 0.049872785806655884 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[11].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/storm |
| keywords[0].score | 0.8326891660690308 |
| keywords[0].display_name | Storm |
| keywords[1].id | https://openalex.org/keywords/national-weather-service |
| keywords[1].score | 0.49407222867012024 |
| keywords[1].display_name | National weather service |
| keywords[2].id | https://openalex.org/keywords/meteorology |
| keywords[2].score | 0.47888439893722534 |
| keywords[2].display_name | Meteorology |
| keywords[3].id | https://openalex.org/keywords/service |
| keywords[3].score | 0.4768475294113159 |
| keywords[3].display_name | Service (business) |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.474923700094223 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/population |
| keywords[5].score | 0.47279852628707886 |
| keywords[5].display_name | Population |
| keywords[6].id | https://openalex.org/keywords/winter-storm |
| keywords[6].score | 0.42800483107566833 |
| keywords[6].display_name | Winter storm |
| keywords[7].id | https://openalex.org/keywords/environmental-science |
| keywords[7].score | 0.40261000394821167 |
| keywords[7].display_name | Environmental science |
| keywords[8].id | https://openalex.org/keywords/demography |
| keywords[8].score | 0.279636949300766 |
| keywords[8].display_name | Demography |
| keywords[9].id | https://openalex.org/keywords/business |
| keywords[9].score | 0.11816507577896118 |
| keywords[9].display_name | Business |
| keywords[10].id | https://openalex.org/keywords/sociology |
| keywords[10].score | 0.06003120541572571 |
| keywords[10].display_name | Sociology |
| keywords[11].id | https://openalex.org/keywords/marketing |
| keywords[11].score | 0.049872785806655884 |
| keywords[11].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.7910/dvn/zyjtwj |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/zyjtwj |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5037170982 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6366-5320 |
| authorships[0].author.display_name | Zeal Shah |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[0].affiliations[0].raw_affiliation_string | (University of Massachusetts Amherst) |
| authorships[0].institutions[0].id | https://openalex.org/I24603500 |
| authorships[0].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeal Shah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | (University of Massachusetts Amherst) |
| authorships[1].author.id | https://openalex.org/A5102753516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4875-8879 |
| authorships[1].author.display_name | Juan Pablo Carvallo |
| authorships[1].affiliations[0].raw_affiliation_string | (Lawrence Bekeley National Lab) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan Pablo Carvallo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (Lawrence Bekeley National Lab) |
| authorships[2].author.id | https://openalex.org/A5007683984 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8383-1912 |
| authorships[2].author.display_name | Feng-Chi Hsu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1297288678 |
| authorships[2].affiliations[0].raw_affiliation_string | (National Renewable Energy Laboratory) |
| authorships[2].institutions[0].id | https://openalex.org/I1297288678 |
| authorships[2].institutions[0].ror | https://ror.org/036266993 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1297288678, https://openalex.org/I1330989302, https://openalex.org/I2800842121 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | National Renewable Energy Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Feng-Chi Hsu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | (National Renewable Energy Laboratory) |
| authorships[3].author.id | https://openalex.org/A5078031046 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7590-2509 |
| authorships[3].author.display_name | Jay Taneja |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24603500 |
| authorships[3].affiliations[0].raw_affiliation_string | (University of Massachusetts Amherst) |
| authorships[3].institutions[0].id | https://openalex.org/I24603500 |
| authorships[3].institutions[0].ror | https://ror.org/0072zz521 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24603500 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Massachusetts Amherst |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jay Taneja |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | (University of Massachusetts Amherst) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/zyjtwj |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-resolution electric service interruptions map and CBG-level share of population interrupted in Texas during the February 2021 winter storm. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12451 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8633000254631042 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid and Power Systems |
| related_works | https://openalex.org/W2106340976, https://openalex.org/W2005378488, https://openalex.org/W62172815, https://openalex.org/W1978529613, https://openalex.org/W2549517554, https://openalex.org/W2142316800, https://openalex.org/W2060583485, https://openalex.org/W2794008375, https://openalex.org/W2074056052, https://openalex.org/W2060354261 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/zyjtwj |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/zyjtwj |
| primary_location.id | doi:10.7910/dvn/zyjtwj |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/zyjtwj |
| publication_date | 2023-04-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.0 | 102 |
| abstract_inverted_index.1 | 91 |
| abstract_inverted_index.A | 85 |
| abstract_inverted_index.a | 6, 10, 18, 36, 50, 70, 88, 96, 99, 129, 178 |
| abstract_inverted_index.15 | 40 |
| abstract_inverted_index.In | 106 |
| abstract_inverted_index.an | 76, 93 |
| abstract_inverted_index.by | 45, 155 |
| abstract_inverted_index.in | 49, 65, 80, 118, 139, 141, 174 |
| abstract_inverted_index.no | 104 |
| abstract_inverted_index.of | 23, 39, 55, 90, 101, 115, 137, 147, 181, 198 |
| abstract_inverted_index.or | 83 |
| abstract_inverted_index.to | 69, 164 |
| abstract_inverted_index.CBG | 166 |
| abstract_inverted_index.CSV | 11, 130, 172 |
| abstract_inverted_index.The | 0, 13, 125 |
| abstract_inverted_index.and | 9, 42, 73, 171 |
| abstract_inverted_index.but | 117 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.map | 22, 34, 67 |
| abstract_inverted_index.the | 24, 28, 56, 66, 109, 113, 134, 148, 161, 165, 169, 175, 182, 190, 194 |
| abstract_inverted_index.two | 4 |
| abstract_inverted_index.was | 43, 78, 153 |
| abstract_inverted_index.2021 | 30 |
| abstract_inverted_index.Each | 63 |
| abstract_inverted_index.TIFF | 7, 14, 162, 170 |
| abstract_inverted_index.This | 33, 151 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.data | 1, 123 |
| abstract_inverted_index.each | 142 |
| abstract_inverted_index.file | 8, 15, 131, 152, 163 |
| abstract_inverted_index.from | 59, 160 |
| abstract_inverted_index.most | 107 |
| abstract_inverted_index.not. | 84 |
| abstract_inverted_index.some | 119 |
| abstract_inverted_index.that | 81, 132, 186 |
| abstract_inverted_index.they | 121 |
| abstract_inverted_index.view | 180 |
| abstract_inverted_index.were | 187 |
| abstract_inverted_index.with | 87, 98 |
| abstract_inverted_index.(CBG) | 146 |
| abstract_inverted_index.2021. | 62, 200 |
| abstract_inverted_index.Texas | 25, 57, 149, 191 |
| abstract_inverted_index.block | 144 |
| abstract_inverted_index.file. | 12 |
| abstract_inverted_index.files | 173 |
| abstract_inverted_index.group | 145 |
| abstract_inverted_index.image | 54 |
| abstract_inverted_index.pixel | 64, 86, 97 |
| abstract_inverted_index.power | 20, 47 |
| abstract_inverted_index.share | 136 |
| abstract_inverted_index.storm | 197 |
| abstract_inverted_index.value | 89, 100 |
| abstract_inverted_index.while | 95 |
| abstract_inverted_index.14-18, | 61 |
| abstract_inverted_index.Census | 143 |
| abstract_inverted_index.across | 189 |
| abstract_inverted_index.binary | 19 |
| abstract_inverted_index.cases, | 108, 120 |
| abstract_inverted_index.during | 27, 193 |
| abstract_inverted_index.files: | 5 |
| abstract_inverted_index.level. | 167 |
| abstract_inverted_index.lights | 53 |
| abstract_inverted_index.outage | 140, 158 |
| abstract_inverted_index.pixels | 111 |
| abstract_inverted_index.region | 26, 58, 192 |
| abstract_inverted_index.severe | 195 |
| abstract_inverted_index.storm. | 32 |
| abstract_inverted_index.values | 159 |
| abstract_inverted_index.winter | 31, 196 |
| abstract_inverted_index.absence | 114 |
| abstract_inverted_index.created | 154 |
| abstract_inverted_index.dataset | 126, 176 |
| abstract_inverted_index.missing | 110 |
| abstract_inverted_index.package | 2 |
| abstract_inverted_index.provide | 177 |
| abstract_inverted_index.region. | 150 |
| abstract_inverted_index.service | 184 |
| abstract_inverted_index.spatial | 37 |
| abstract_inverted_index.whether | 75 |
| abstract_inverted_index.(raster) | 16 |
| abstract_inverted_index.February | 29, 60, 199 |
| abstract_inverted_index.detailed | 179 |
| abstract_inverted_index.detected | 79 |
| abstract_inverted_index.electric | 183 |
| abstract_inverted_index.includes | 3, 128 |
| abstract_inverted_index.indicate | 112, 122 |
| abstract_inverted_index.location | 72, 82 |
| abstract_inverted_index.observed | 188 |
| abstract_inverted_index.provides | 133 |
| abstract_inverted_index.Together, | 168 |
| abstract_inverted_index.composite | 51 |
| abstract_inverted_index.detecting | 46 |
| abstract_inverted_index.estimated | 135 |
| abstract_inverted_index.generated | 44 |
| abstract_inverted_index.indicates | 74 |
| abstract_inverted_index.nighttime | 52 |
| abstract_inverted_index.population | 138 |
| abstract_inverted_index.represents | 17, 92, 103 |
| abstract_inverted_index.resolution | 38 |
| abstract_inverted_index.aggregating | 156 |
| abstract_inverted_index.arc-seconds | 41 |
| abstract_inverted_index.corresponds | 68 |
| abstract_inverted_index.pixel-level | 157 |
| abstract_inverted_index.population, | 116 |
| abstract_inverted_index.geographical | 71 |
| abstract_inverted_index.interruption | 77 |
| abstract_inverted_index.interruption, | 94 |
| abstract_inverted_index.interruption. | 105 |
| abstract_inverted_index.interruptions | 21, 48, 185 |
| abstract_inverted_index.unavailability. | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |