High Resolution UDF Meshing via Iterative Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.17212
Unsigned Distance Fields (UDFs) are a natural implicit representation for open surfaces but, unlike Signed Distance Fields (SDFs), are challenging to triangulate into explicit meshes. This is especially true at high resolutions where neural UDFs exhibit higher noise levels, which makes it hard to capture fine details. Most current techniques perform within single voxels without reference to their neighborhood, resulting in missing surface and holes where the UDF is ambiguous or noisy. We show that this can be remedied by performing several passes and by reasoning on previously extracted surface elements to incorporate neighborhood information. Our key contribution is an iterative neural network that does this and progressively improves surface recovery within each voxel by spatially propagating information from increasingly distant neighbors. Unlike single-pass methods, our approach integrates newly detected surfaces, distance values, and gradients across multiple iterations, effectively correcting errors and stabilizing extraction in challenging regions. Experiments on diverse 3D models demonstrate that our method produces significantly more accurate and complete meshes than existing approaches, particularly for complex geometries, enabling UDF surface extraction at higher resolutions where traditional methods fail.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.17212
- https://arxiv.org/pdf/2509.17212
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414747814
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414747814Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.17212Digital Object Identifier
- Title
-
High Resolution UDF Meshing via Iterative NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-21Full publication date if available
- Authors
-
Federico Stella, Nicolas Talabot, Hieu Trung Le, Pascal FuaList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.17212Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.17212Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.17212Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414747814 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.17212 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.17212 |
| ids.openalex | https://openalex.org/W4414747814 |
| fwci | |
| type | preprint |
| title | High Resolution UDF Meshing via Iterative Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9721999764442444 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9611999988555908 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.17212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.17212 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.17212 |
| locations[1].id | doi:10.48550/arxiv.2509.17212 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.17212 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114509470 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Federico Stella |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Stella, Federico |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5025259060 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0952-5906 |
| authorships[1].author.display_name | Nicolas Talabot |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Talabot, Nicolas |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5079693009 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2510-073X |
| authorships[2].author.display_name | Hieu Trung Le |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Le, Hieu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038674741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6702-9970 |
| authorships[3].author.display_name | Pascal Fua |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fua, Pascal |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.17212 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High Resolution UDF Meshing via Iterative Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9721999764442444 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.17212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.17212 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.17212 |
| primary_location.id | pmh:oai:arXiv.org:2509.17212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.17212 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.17212 |
| publication_date | 2025-09-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.3D | 150 |
| abstract_inverted_index.We | 72 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.at | 29, 174 |
| abstract_inverted_index.be | 77 |
| abstract_inverted_index.by | 79, 84, 114 |
| abstract_inverted_index.in | 60, 144 |
| abstract_inverted_index.is | 26, 68, 98 |
| abstract_inverted_index.it | 41 |
| abstract_inverted_index.on | 86, 148 |
| abstract_inverted_index.or | 70 |
| abstract_inverted_index.to | 20, 43, 56, 91 |
| abstract_inverted_index.Our | 95 |
| abstract_inverted_index.UDF | 67, 171 |
| abstract_inverted_index.and | 63, 83, 106, 133, 141, 160 |
| abstract_inverted_index.are | 4, 18 |
| abstract_inverted_index.can | 76 |
| abstract_inverted_index.for | 9, 167 |
| abstract_inverted_index.key | 96 |
| abstract_inverted_index.our | 125, 154 |
| abstract_inverted_index.the | 66 |
| abstract_inverted_index.Most | 47 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.UDFs | 34 |
| abstract_inverted_index.but, | 12 |
| abstract_inverted_index.does | 104 |
| abstract_inverted_index.each | 112 |
| abstract_inverted_index.fine | 45 |
| abstract_inverted_index.from | 118 |
| abstract_inverted_index.hard | 42 |
| abstract_inverted_index.high | 30 |
| abstract_inverted_index.into | 22 |
| abstract_inverted_index.more | 158 |
| abstract_inverted_index.open | 10 |
| abstract_inverted_index.show | 73 |
| abstract_inverted_index.than | 163 |
| abstract_inverted_index.that | 74, 103, 153 |
| abstract_inverted_index.this | 75, 105 |
| abstract_inverted_index.true | 28 |
| abstract_inverted_index.fail. | 180 |
| abstract_inverted_index.holes | 64 |
| abstract_inverted_index.makes | 40 |
| abstract_inverted_index.newly | 128 |
| abstract_inverted_index.noise | 37 |
| abstract_inverted_index.their | 57 |
| abstract_inverted_index.voxel | 113 |
| abstract_inverted_index.where | 32, 65, 177 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.(UDFs) | 3 |
| abstract_inverted_index.Fields | 2, 16 |
| abstract_inverted_index.Signed | 14 |
| abstract_inverted_index.Unlike | 122 |
| abstract_inverted_index.across | 135 |
| abstract_inverted_index.errors | 140 |
| abstract_inverted_index.higher | 36, 175 |
| abstract_inverted_index.meshes | 162 |
| abstract_inverted_index.method | 155 |
| abstract_inverted_index.models | 151 |
| abstract_inverted_index.neural | 33, 101 |
| abstract_inverted_index.noisy. | 71 |
| abstract_inverted_index.passes | 82 |
| abstract_inverted_index.single | 52 |
| abstract_inverted_index.unlike | 13 |
| abstract_inverted_index.voxels | 53 |
| abstract_inverted_index.within | 51, 111 |
| abstract_inverted_index.(SDFs), | 17 |
| abstract_inverted_index.capture | 44 |
| abstract_inverted_index.complex | 168 |
| abstract_inverted_index.current | 48 |
| abstract_inverted_index.distant | 120 |
| abstract_inverted_index.diverse | 149 |
| abstract_inverted_index.exhibit | 35 |
| abstract_inverted_index.levels, | 38 |
| abstract_inverted_index.meshes. | 24 |
| abstract_inverted_index.methods | 179 |
| abstract_inverted_index.missing | 61 |
| abstract_inverted_index.natural | 6 |
| abstract_inverted_index.network | 102 |
| abstract_inverted_index.perform | 50 |
| abstract_inverted_index.several | 81 |
| abstract_inverted_index.surface | 62, 89, 109, 172 |
| abstract_inverted_index.values, | 132 |
| abstract_inverted_index.without | 54 |
| abstract_inverted_index.Distance | 1, 15 |
| abstract_inverted_index.Unsigned | 0 |
| abstract_inverted_index.accurate | 159 |
| abstract_inverted_index.approach | 126 |
| abstract_inverted_index.complete | 161 |
| abstract_inverted_index.details. | 46 |
| abstract_inverted_index.detected | 129 |
| abstract_inverted_index.distance | 131 |
| abstract_inverted_index.elements | 90 |
| abstract_inverted_index.enabling | 170 |
| abstract_inverted_index.existing | 164 |
| abstract_inverted_index.explicit | 23 |
| abstract_inverted_index.implicit | 7 |
| abstract_inverted_index.improves | 108 |
| abstract_inverted_index.methods, | 124 |
| abstract_inverted_index.multiple | 136 |
| abstract_inverted_index.produces | 156 |
| abstract_inverted_index.recovery | 110 |
| abstract_inverted_index.regions. | 146 |
| abstract_inverted_index.remedied | 78 |
| abstract_inverted_index.surfaces | 11 |
| abstract_inverted_index.ambiguous | 69 |
| abstract_inverted_index.extracted | 88 |
| abstract_inverted_index.gradients | 134 |
| abstract_inverted_index.iterative | 100 |
| abstract_inverted_index.reasoning | 85 |
| abstract_inverted_index.reference | 55 |
| abstract_inverted_index.resulting | 59 |
| abstract_inverted_index.spatially | 115 |
| abstract_inverted_index.surfaces, | 130 |
| abstract_inverted_index.correcting | 139 |
| abstract_inverted_index.especially | 27 |
| abstract_inverted_index.extraction | 143, 173 |
| abstract_inverted_index.integrates | 127 |
| abstract_inverted_index.neighbors. | 121 |
| abstract_inverted_index.performing | 80 |
| abstract_inverted_index.previously | 87 |
| abstract_inverted_index.techniques | 49 |
| abstract_inverted_index.Experiments | 147 |
| abstract_inverted_index.approaches, | 165 |
| abstract_inverted_index.challenging | 19, 145 |
| abstract_inverted_index.demonstrate | 152 |
| abstract_inverted_index.effectively | 138 |
| abstract_inverted_index.geometries, | 169 |
| abstract_inverted_index.incorporate | 92 |
| abstract_inverted_index.information | 117 |
| abstract_inverted_index.iterations, | 137 |
| abstract_inverted_index.propagating | 116 |
| abstract_inverted_index.resolutions | 31, 176 |
| abstract_inverted_index.single-pass | 123 |
| abstract_inverted_index.stabilizing | 142 |
| abstract_inverted_index.traditional | 178 |
| abstract_inverted_index.triangulate | 21 |
| abstract_inverted_index.contribution | 97 |
| abstract_inverted_index.increasingly | 119 |
| abstract_inverted_index.information. | 94 |
| abstract_inverted_index.neighborhood | 93 |
| abstract_inverted_index.particularly | 166 |
| abstract_inverted_index.neighborhood, | 58 |
| abstract_inverted_index.progressively | 107 |
| abstract_inverted_index.significantly | 157 |
| abstract_inverted_index.representation | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |