High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/ijerph19138005
Spatially explicit urban air quality information is important for urban fine-management and public life. However, existing air quality measurement methods still have some limitations on spatial coverage and system stability. A micro station is an emerging monitoring system with multiple sensors, which can be deployed to provide dense air quality monitoring data. Here, we proposed a method for urban air quality mapping at high-resolution for multiple pollutants. By using the dense air quality monitoring data from 448 micro stations in Lanzhou city, we developed a decision tree model to infer the distribution of citywide air quality at a 500 m × 500 m × 1 h resolution, with a coefficient of determination (R2) value of 0.740 for PM2.5, 0.754 for CO and 0.716 for SO2. Meanwhile, we also show that the deployment density of the monitoring stations can have a significant impact on the air quality inference results. Our method is able to show both short-term and long-term distribution of multiple important pollutants in the city, which demonstrates the potential and feasibility of dense monitoring data combined with advanced data science methods to support urban atmospheric environment fine-management, policy making, and public health studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ijerph19138005
- https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317
- OA Status
- gold
- Cited By
- 14
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283783145
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283783145Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ijerph19138005Digital Object Identifier
- Title
-
High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-29Full publication date if available
- Authors
-
Rong Guo, Ying Qi, Bu Zhao, Ziyu Pei, Fei Wen, Shun Wu, Qiang ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/ijerph19138005Publisher landing page
- PDF URL
-
https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317Direct OA link when available
- Concepts
-
Air quality index, Environmental science, Pollutant, Air monitoring, Air pollution, Data quality, Computer science, Air pollutants, Remote sensing, Data mining, Meteorology, Environmental engineering, Geography, Engineering, Chemistry, Operations management, Organic chemistry, Metric (unit)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 6, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283783145 |
|---|---|
| doi | https://doi.org/10.3390/ijerph19138005 |
| ids.doi | https://doi.org/10.3390/ijerph19138005 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35805664 |
| ids.openalex | https://openalex.org/W4283783145 |
| fwci | 1.37598116 |
| mesh[0].qualifier_ui | Q000032 |
| mesh[0].descriptor_ui | D000393 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | analysis |
| mesh[0].descriptor_name | Air Pollutants |
| mesh[1].qualifier_ui | Q000032 |
| mesh[1].descriptor_ui | D000397 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | analysis |
| mesh[1].descriptor_name | Air Pollution |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D004784 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Environmental Monitoring |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D004785 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Environmental Pollutants |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | Q000032 |
| mesh[5].descriptor_ui | D052638 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | analysis |
| mesh[5].descriptor_name | Particulate Matter |
| mesh[6].qualifier_ui | Q000032 |
| mesh[6].descriptor_ui | D000393 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | analysis |
| mesh[6].descriptor_name | Air Pollutants |
| mesh[7].qualifier_ui | Q000032 |
| mesh[7].descriptor_ui | D000397 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | analysis |
| mesh[7].descriptor_name | Air Pollution |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D004784 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Environmental Monitoring |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D004785 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Environmental Pollutants |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000069550 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Machine Learning |
| mesh[11].qualifier_ui | Q000032 |
| mesh[11].descriptor_ui | D052638 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | analysis |
| mesh[11].descriptor_name | Particulate Matter |
| type | article |
| title | High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine Learning |
| awards[0].id | https://openalex.org/G6763219854 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 71764025 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 13 |
| biblio.volume | 19 |
| biblio.last_page | 8005 |
| biblio.first_page | 8005 |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T10190 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Air Quality and Health Impacts |
| topics[2].id | https://openalex.org/T10075 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Atmospheric chemistry and aerosols |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C126314574 |
| concepts[0].level | 2 |
| concepts[0].score | 0.805672824382782 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2364111 |
| concepts[0].display_name | Air quality index |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6340732574462891 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C82685317 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5491629838943481 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q19829510 |
| concepts[2].display_name | Pollutant |
| concepts[3].id | https://openalex.org/C3019654008 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5394659042358398 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4826440 |
| concepts[3].display_name | Air monitoring |
| concepts[4].id | https://openalex.org/C559116025 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45997098088264465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q131123 |
| concepts[4].display_name | Air pollution |
| concepts[5].id | https://openalex.org/C24756922 |
| concepts[5].level | 3 |
| concepts[5].score | 0.45132604241371155 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[5].display_name | Data quality |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4214667081832886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2987853052 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4135567247867584 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q131123 |
| concepts[7].display_name | Air pollutants |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4002962112426758 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36179208755493164 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C153294291 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33062463998794556 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[10].display_name | Meteorology |
| concepts[11].id | https://openalex.org/C87717796 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2130565643310547 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q146326 |
| concepts[11].display_name | Environmental engineering |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.16052812337875366 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13267096877098083 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C21547014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[15].display_name | Operations management |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C176217482 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[17].display_name | Metric (unit) |
| keywords[0].id | https://openalex.org/keywords/air-quality-index |
| keywords[0].score | 0.805672824382782 |
| keywords[0].display_name | Air quality index |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.6340732574462891 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/pollutant |
| keywords[2].score | 0.5491629838943481 |
| keywords[2].display_name | Pollutant |
| keywords[3].id | https://openalex.org/keywords/air-monitoring |
| keywords[3].score | 0.5394659042358398 |
| keywords[3].display_name | Air monitoring |
| keywords[4].id | https://openalex.org/keywords/air-pollution |
| keywords[4].score | 0.45997098088264465 |
| keywords[4].display_name | Air pollution |
| keywords[5].id | https://openalex.org/keywords/data-quality |
| keywords[5].score | 0.45132604241371155 |
| keywords[5].display_name | Data quality |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4214667081832886 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/air-pollutants |
| keywords[7].score | 0.4135567247867584 |
| keywords[7].display_name | Air pollutants |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.4002962112426758 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.36179208755493164 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/meteorology |
| keywords[10].score | 0.33062463998794556 |
| keywords[10].display_name | Meteorology |
| keywords[11].id | https://openalex.org/keywords/environmental-engineering |
| keywords[11].score | 0.2130565643310547 |
| keywords[11].display_name | Environmental engineering |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.16052812337875366 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.13267096877098083 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/ijerph19138005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S15239247 |
| locations[0].source.issn | 1660-4601, 1661-7827 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1660-4601 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Environmental Research and Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Environmental Research and Public Health |
| locations[0].landing_page_url | https://doi.org/10.3390/ijerph19138005 |
| locations[1].id | pmid:35805664 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International journal of environmental research and public health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35805664 |
| locations[2].id | pmh:oai:doaj.org/article:091fd07adc1d466e8e903fb9b4919ca6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Environmental Research and Public Health, Vol 19, Iss 8005, p 8005 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/091fd07adc1d466e8e903fb9b4919ca6 |
| locations[3].id | pmh:oai:mdpi.com:/1660-4601/19/13/8005/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | International Journal of Environmental Research and Public Health; Volume 19; Issue 13; Pages: 8005 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/ijerph19138005 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9265361 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Int J Environ Res Public Health |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9265361 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5027104123 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0332-2219 |
| authorships[0].author.display_name | Rong Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[0].institutions[0].id | https://openalex.org/I68986083 |
| authorships[0].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northwest Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rong Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[1].author.id | https://openalex.org/A5019506176 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0341-6450 |
| authorships[1].author.display_name | Ying Qi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[1].institutions[0].id | https://openalex.org/I68986083 |
| authorships[1].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwest Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ying Qi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[2].author.id | https://openalex.org/A5080852578 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5310-4020 |
| authorships[2].author.display_name | Bu Zhao |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[2].affiliations[0].raw_affiliation_string | School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA |
| authorships[2].institutions[0].id | https://openalex.org/I27837315 |
| authorships[2].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Michigan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bu Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA |
| authorships[3].author.id | https://openalex.org/A5082341912 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5572-4880 |
| authorships[3].author.display_name | Ziyu Pei |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[3].institutions[0].id | https://openalex.org/I68986083 |
| authorships[3].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northwest Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ziyu Pei |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[4].author.id | https://openalex.org/A5072732080 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8136-556X |
| authorships[4].author.display_name | Fei Wen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210088485 |
| authorships[4].affiliations[0].raw_affiliation_string | Gansu Academy of Eco-Environmental Sciences, Lanzhou 730070, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210088485 |
| authorships[4].institutions[0].ror | https://ror.org/003cbyt26 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210088485 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Gansu Academy of Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fei Wen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Gansu Academy of Eco-Environmental Sciences, Lanzhou 730070, China |
| authorships[5].author.id | https://openalex.org/A5073381824 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7656-5188 |
| authorships[5].author.display_name | Shun Wu |
| authorships[5].affiliations[0].raw_affiliation_string | Sichuan Meteorological Service Centre, Chengdu 610072, China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shun Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Sichuan Meteorological Service Centre, Chengdu 610072, China |
| authorships[6].author.id | https://openalex.org/A5100381927 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6504-9089 |
| authorships[6].author.display_name | Qiang Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[6].institutions[0].id | https://openalex.org/I68986083 |
| authorships[6].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Northwest Normal University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qiang Zhang |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W2991488401, https://openalex.org/W1603912562, https://openalex.org/W3080344894, https://openalex.org/W4404475253, https://openalex.org/W4318499393, https://openalex.org/W2082703639, https://openalex.org/W2066546759, https://openalex.org/W2733363865, https://openalex.org/W3138306932, https://openalex.org/W2295152223 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/ijerph19138005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S15239247 |
| best_oa_location.source.issn | 1660-4601, 1661-7827 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1660-4601 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Environmental Research and Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Environmental Research and Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ijerph19138005 |
| primary_location.id | doi:10.3390/ijerph19138005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S15239247 |
| primary_location.source.issn | 1660-4601, 1661-7827 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1660-4601 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Environmental Research and Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1660-4601/19/13/8005/pdf?version=1656645317 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Environmental Research and Public Health |
| primary_location.landing_page_url | https://doi.org/10.3390/ijerph19138005 |
| publication_date | 2022-06-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2481644207, https://openalex.org/W3010624272, https://openalex.org/W2954784607, https://openalex.org/W4225549431, https://openalex.org/W3041135923, https://openalex.org/W1984394892, https://openalex.org/W2809035759, https://openalex.org/W2135948793, https://openalex.org/W2124642314, https://openalex.org/W2155655560, https://openalex.org/W1971402834, https://openalex.org/W2964378914, https://openalex.org/W2767894694, https://openalex.org/W2920884856, https://openalex.org/W2954586028, https://openalex.org/W2990974130, https://openalex.org/W2621121878, https://openalex.org/W2330777395, https://openalex.org/W2909938372, https://openalex.org/W2952297896, https://openalex.org/W2800133189, https://openalex.org/W3088297551, https://openalex.org/W2916118502, https://openalex.org/W2949220266, https://openalex.org/W3032398021, https://openalex.org/W3030103373, https://openalex.org/W3042302995, https://openalex.org/W4210827575, https://openalex.org/W3136400264, https://openalex.org/W2295598076, https://openalex.org/W2980309524, https://openalex.org/W2913707014, https://openalex.org/W6696332616, https://openalex.org/W2294879709, https://openalex.org/W1973749534, https://openalex.org/W3187321613, https://openalex.org/W2563548343, https://openalex.org/W3015025985, https://openalex.org/W2804618455, https://openalex.org/W2799733823, https://openalex.org/W3182844156, https://openalex.org/W2039636725, https://openalex.org/W3164551595, https://openalex.org/W3123995874, https://openalex.org/W2289128632, https://openalex.org/W2898407312 |
| referenced_works_count | 46 |
| abstract_inverted_index.1 | 104 |
| abstract_inverted_index.A | 30 |
| abstract_inverted_index.a | 55, 84, 97, 108, 139 |
| abstract_inverted_index.h | 105 |
| abstract_inverted_index.m | 99, 102 |
| abstract_inverted_index.By | 67 |
| abstract_inverted_index.CO | 120 |
| abstract_inverted_index.an | 34 |
| abstract_inverted_index.at | 62, 96 |
| abstract_inverted_index.be | 43 |
| abstract_inverted_index.in | 79, 163 |
| abstract_inverted_index.is | 6, 33, 150 |
| abstract_inverted_index.of | 92, 110, 114, 133, 159, 172 |
| abstract_inverted_index.on | 24, 142 |
| abstract_inverted_index.to | 45, 88, 152, 182 |
| abstract_inverted_index.we | 53, 82, 126 |
| abstract_inverted_index.× | 100, 103 |
| abstract_inverted_index.448 | 76 |
| abstract_inverted_index.500 | 98, 101 |
| abstract_inverted_index.Our | 148 |
| abstract_inverted_index.air | 3, 16, 48, 59, 71, 94, 144 |
| abstract_inverted_index.and | 11, 27, 121, 156, 170, 190 |
| abstract_inverted_index.can | 42, 137 |
| abstract_inverted_index.for | 8, 57, 64, 116, 119, 123 |
| abstract_inverted_index.the | 69, 90, 130, 134, 143, 164, 168 |
| abstract_inverted_index.(R2) | 112 |
| abstract_inverted_index.SO2. | 124 |
| abstract_inverted_index.able | 151 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.both | 154 |
| abstract_inverted_index.data | 74, 175, 179 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.have | 21, 138 |
| abstract_inverted_index.show | 128, 153 |
| abstract_inverted_index.some | 22 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.tree | 86 |
| abstract_inverted_index.with | 38, 107, 177 |
| abstract_inverted_index.0.716 | 122 |
| abstract_inverted_index.0.740 | 115 |
| abstract_inverted_index.0.754 | 118 |
| abstract_inverted_index.Here, | 52 |
| abstract_inverted_index.city, | 81, 165 |
| abstract_inverted_index.data. | 51 |
| abstract_inverted_index.dense | 47, 70, 173 |
| abstract_inverted_index.infer | 89 |
| abstract_inverted_index.life. | 13 |
| abstract_inverted_index.micro | 31, 77 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.still | 20 |
| abstract_inverted_index.urban | 2, 9, 58, 184 |
| abstract_inverted_index.using | 68 |
| abstract_inverted_index.value | 113 |
| abstract_inverted_index.which | 41, 166 |
| abstract_inverted_index.PM2.5, | 117 |
| abstract_inverted_index.health | 192 |
| abstract_inverted_index.impact | 141 |
| abstract_inverted_index.method | 56, 149 |
| abstract_inverted_index.policy | 188 |
| abstract_inverted_index.public | 12, 191 |
| abstract_inverted_index.system | 28, 37 |
| abstract_inverted_index.Lanzhou | 80 |
| abstract_inverted_index.density | 132 |
| abstract_inverted_index.making, | 189 |
| abstract_inverted_index.mapping | 61 |
| abstract_inverted_index.methods | 19, 181 |
| abstract_inverted_index.provide | 46 |
| abstract_inverted_index.quality | 4, 17, 49, 60, 72, 95, 145 |
| abstract_inverted_index.science | 180 |
| abstract_inverted_index.spatial | 25 |
| abstract_inverted_index.station | 32 |
| abstract_inverted_index.support | 183 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.advanced | 178 |
| abstract_inverted_index.citywide | 93 |
| abstract_inverted_index.combined | 176 |
| abstract_inverted_index.coverage | 26 |
| abstract_inverted_index.decision | 85 |
| abstract_inverted_index.deployed | 44 |
| abstract_inverted_index.emerging | 35 |
| abstract_inverted_index.existing | 15 |
| abstract_inverted_index.explicit | 1 |
| abstract_inverted_index.multiple | 39, 65, 160 |
| abstract_inverted_index.proposed | 54 |
| abstract_inverted_index.results. | 147 |
| abstract_inverted_index.sensors, | 40 |
| abstract_inverted_index.stations | 78, 136 |
| abstract_inverted_index.studies. | 193 |
| abstract_inverted_index.Spatially | 0 |
| abstract_inverted_index.developed | 83 |
| abstract_inverted_index.important | 7, 161 |
| abstract_inverted_index.inference | 146 |
| abstract_inverted_index.long-term | 157 |
| abstract_inverted_index.potential | 169 |
| abstract_inverted_index.Meanwhile, | 125 |
| abstract_inverted_index.deployment | 131 |
| abstract_inverted_index.monitoring | 36, 50, 73, 135, 174 |
| abstract_inverted_index.pollutants | 162 |
| abstract_inverted_index.short-term | 155 |
| abstract_inverted_index.stability. | 29 |
| abstract_inverted_index.atmospheric | 185 |
| abstract_inverted_index.coefficient | 109 |
| abstract_inverted_index.environment | 186 |
| abstract_inverted_index.feasibility | 171 |
| abstract_inverted_index.information | 5 |
| abstract_inverted_index.limitations | 23 |
| abstract_inverted_index.measurement | 18 |
| abstract_inverted_index.pollutants. | 66 |
| abstract_inverted_index.resolution, | 106 |
| abstract_inverted_index.significant | 140 |
| abstract_inverted_index.demonstrates | 167 |
| abstract_inverted_index.distribution | 91, 158 |
| abstract_inverted_index.determination | 111 |
| abstract_inverted_index.fine-management | 10 |
| abstract_inverted_index.high-resolution | 63 |
| abstract_inverted_index.fine-management, | 187 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5100381927 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I68986083 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.76075551 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |