HIGH-TEMPERATURE HYPERSONIC LAVAL NOZZLE FOR NON-LTE CAVITY RINGDOWN SPECTROSCOPY Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.15278/isms.2021.tb11
The SMAUG apparatus (Spectroscopy of Molecules Accelerated in Uniform Gas flows) was developed to produce hot spectra of various molecules of interest for hot astrophysical atmospheres, like the one surrounding hot Jupiters, reaching up to 2500 K. High-temperature IR spectroscopic data is needed to retrieve temperature and concentration profiles from astronomical spectra. \nA small dimension Laval nozzle connected to a compact high enthalpy source equipped with cavity ringdown spectroscopy (CRDS) is used to produce high-resolution infrared spectra of polyatomic molecules in the 1.67~$\\mu$m region.$^{a}$. The experimental setup can operate according to two complementary working regimes: non-local thermodynamic equilibrium (non-LTE) (vibrationally hot and rotationally cold) and LTE conditions, to interpret the complex pattern of highly-excited vibrational states. Two different gases, carbon monoxide (CO) and methane (CH$_{4}$) were used as test molecules. Using non-LTE conditions vibrational (T$_{vib}$) and rotational (T$_{rot}$) temperatures were extracted from the recorded infrared spectrum leading to T$_{vib}$~=~1346(52)~K and T$_{rot}$~=~12(1)~K for CO. A rotational temperature of 39(3)~K was measured for CH4, while two vibrational temperatures were necessary to reproduce the observed intensities. The population distribution between vibrational polyads was correctly described with T$_{vib,I}$~=~825(50)~K" , while the population distribution within a given polyad was modelled correctly by T$_{vib,II}$~=~39(5)~K" , testifying to a more rapid vibrational relaxation between the vibrational energy levels constituting a polyad. Using a “post-shock CRDS” technique CO and CH$_{4}$ LTE spectra were recorded at 950 K and 1400 K.\\\\\n$^{a}$\\textit{E.Dud$\\acute{a}$s \\emph{et al.} High-temperature hypersonic Laval nozzle for non-LTE cavity ringdown spectroscopy. J Chem Phys 2020;152:134201. https://doi.org/10.1063/5.0003886.}
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.15278/isms.2021.tb11
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4244457175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4244457175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.15278/isms.2021.tb11Digital Object Identifier
- Title
-
HIGH-TEMPERATURE HYPERSONIC LAVAL NOZZLE FOR NON-LTE CAVITY RINGDOWN SPECTROSCOPYWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-22Full publication date if available
- Authors
-
Eszter DUDÁS, Nicolas Suas-David, Christine Charles, S. Kassi, Vinayak Kulkarni, Shuvayan Brahmachary, Abdessamad Bénidar, Robert GeorgesList of authors in order
- Landing page
-
https://doi.org/10.15278/isms.2021.tb11Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/2142/111187Direct OA link when available
- Concepts
-
Hypersonic speed, Nozzle, Aerospace engineering, Materials science, Spectroscopy, Temperature measurement, Physics, Thermodynamics, Engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4244457175 |
|---|---|
| doi | https://doi.org/10.15278/isms.2021.tb11 |
| ids.doi | https://doi.org/10.15278/isms.2021.tb11 |
| ids.openalex | https://openalex.org/W4244457175 |
| fwci | 0.14876925 |
| type | article |
| title | HIGH-TEMPERATURE HYPERSONIC LAVAL NOZZLE FOR NON-LTE CAVITY RINGDOWN SPECTROSCOPY |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11856 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9890999794006348 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Thermography and Photoacoustic Techniques |
| topics[1].id | https://openalex.org/T10662 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9144999980926514 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Ultrasonics and Acoustic Wave Propagation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122824865 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7617363929748535 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830787 |
| concepts[0].display_name | Hypersonic speed |
| concepts[1].id | https://openalex.org/C56200935 |
| concepts[1].level | 2 |
| concepts[1].score | 0.628666341304779 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q250840 |
| concepts[1].display_name | Nozzle |
| concepts[2].id | https://openalex.org/C146978453 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5682679414749146 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[2].display_name | Aerospace engineering |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.500983715057373 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C32891209 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4913395941257477 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q483666 |
| concepts[4].display_name | Spectroscopy |
| concepts[5].id | https://openalex.org/C72293138 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41398999094963074 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q909741 |
| concepts[5].display_name | Temperature measurement |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3062615394592285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C97355855 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2023734450340271 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[7].display_name | Thermodynamics |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.13475781679153442 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/hypersonic-speed |
| keywords[0].score | 0.7617363929748535 |
| keywords[0].display_name | Hypersonic speed |
| keywords[1].id | https://openalex.org/keywords/nozzle |
| keywords[1].score | 0.628666341304779 |
| keywords[1].display_name | Nozzle |
| keywords[2].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[2].score | 0.5682679414749146 |
| keywords[2].display_name | Aerospace engineering |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.500983715057373 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/spectroscopy |
| keywords[4].score | 0.4913395941257477 |
| keywords[4].display_name | Spectroscopy |
| keywords[5].id | https://openalex.org/keywords/temperature-measurement |
| keywords[5].score | 0.41398999094963074 |
| keywords[5].display_name | Temperature measurement |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.3062615394592285 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/thermodynamics |
| keywords[7].score | 0.2023734450340271 |
| keywords[7].display_name | Thermodynamics |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.13475781679153442 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.15278/isms.2021.tb11 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306523696 |
| locations[0].source.issn | |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 2021 International Symposium on Molecular Spectroscopy |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2021 International Symposium on Molecular Spectroscopy |
| locations[0].landing_page_url | https://doi.org/10.15278/isms.2021.tb11 |
| locations[1].id | pmh:oai:www.ideals.illinois.edu:2142/111187 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401358 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Illinois Digital Environment for Access to Learning and Scholarship (University of Illinois at Urbana-Champaign) |
| locations[1].source.host_organization | https://openalex.org/I2801919071 |
| locations[1].source.host_organization_name | University of Illinois System |
| locations[1].source.host_organization_lineage | https://openalex.org/I2801919071 |
| locations[1].license | |
| locations[1].pdf_url | http://hdl.handle.net/2142/111187 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/2142/111187 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056286374 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Eszter DUDÁS |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eszter DUDÁS |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5013109365 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-9774-2540 |
| authorships[1].author.display_name | Nicolas Suas-David |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nicolas Suas-David |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073249367 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1108-6298 |
| authorships[2].author.display_name | Christine Charles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christine Charles |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055838402 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5313-2283 |
| authorships[3].author.display_name | S. Kassi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Samir Kassi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5070389124 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4945-5618 |
| authorships[4].author.display_name | Vinayak Kulkarni |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vinayak Kulkarni |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5020117196 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4383-0875 |
| authorships[5].author.display_name | Shuvayan Brahmachary |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shuvayan Brahmachary |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5063294861 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0096-6572 |
| authorships[6].author.display_name | Abdessamad Bénidar |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Abdessamad Benidar |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5017734493 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4885-1536 |
| authorships[7].author.display_name | Robert Georges |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Robert Georges |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/2142/111187 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HIGH-TEMPERATURE HYPERSONIC LAVAL NOZZLE FOR NON-LTE CAVITY RINGDOWN SPECTROSCOPY |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11856 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9890999794006348 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Thermography and Photoacoustic Techniques |
| related_works | https://openalex.org/W2360206036, https://openalex.org/W2086347189, https://openalex.org/W2377901036, https://openalex.org/W4327773545, https://openalex.org/W2884606178, https://openalex.org/W3179160715, https://openalex.org/W2041172866, https://openalex.org/W2009254629, https://openalex.org/W4387962270, https://openalex.org/W3118446141 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:www.ideals.illinois.edu:2142/111187 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401358 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Illinois Digital Environment for Access to Learning and Scholarship (University of Illinois at Urbana-Champaign) |
| best_oa_location.source.host_organization | https://openalex.org/I2801919071 |
| best_oa_location.source.host_organization_name | University of Illinois System |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2801919071 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/2142/111187 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/2142/111187 |
| primary_location.id | doi:10.15278/isms.2021.tb11 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306523696 |
| primary_location.source.issn | |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 2021 International Symposium on Molecular Spectroscopy |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2021 International Symposium on Molecular Spectroscopy |
| primary_location.landing_page_url | https://doi.org/10.15278/isms.2021.tb11 |
| publication_date | 2021-06-22 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index., | 184, 198 |
| abstract_inverted_index.A | 153 |
| abstract_inverted_index.J | 243 |
| abstract_inverted_index.K | 228 |
| abstract_inverted_index.a | 59, 190, 201, 212, 215 |
| abstract_inverted_index.CO | 219 |
| abstract_inverted_index.IR | 38 |
| abstract_inverted_index.K. | 36 |
| abstract_inverted_index.as | 127 |
| abstract_inverted_index.at | 226 |
| abstract_inverted_index.by | 196 |
| abstract_inverted_index.in | 7, 80 |
| abstract_inverted_index.is | 41, 70 |
| abstract_inverted_index.of | 4, 17, 20, 77, 112, 156 |
| abstract_inverted_index.to | 13, 34, 43, 58, 72, 90, 107, 147, 168, 200 |
| abstract_inverted_index.up | 33 |
| abstract_inverted_index.950 | 227 |
| abstract_inverted_index.CO. | 152 |
| abstract_inverted_index.Gas | 9 |
| abstract_inverted_index.LTE | 105, 222 |
| abstract_inverted_index.The | 0, 84, 173 |
| abstract_inverted_index.Two | 116 |
| abstract_inverted_index.\nA | 52 |
| abstract_inverted_index.and | 46, 101, 104, 122, 135, 149, 220, 229 |
| abstract_inverted_index.can | 87 |
| abstract_inverted_index.for | 22, 151, 160, 238 |
| abstract_inverted_index.hot | 15, 23, 30, 100 |
| abstract_inverted_index.one | 28 |
| abstract_inverted_index.the | 27, 81, 109, 142, 170, 186, 207 |
| abstract_inverted_index.two | 91, 163 |
| abstract_inverted_index.was | 11, 158, 179, 193 |
| abstract_inverted_index.(CO) | 121 |
| abstract_inverted_index.1400 | 230 |
| abstract_inverted_index.2500 | 35 |
| abstract_inverted_index.CH4, | 161 |
| abstract_inverted_index.Chem | 244 |
| abstract_inverted_index.Phys | 245 |
| abstract_inverted_index.al.} | 233 |
| abstract_inverted_index.data | 40 |
| abstract_inverted_index.from | 49, 141 |
| abstract_inverted_index.high | 61 |
| abstract_inverted_index.like | 26 |
| abstract_inverted_index.more | 202 |
| abstract_inverted_index.test | 128 |
| abstract_inverted_index.used | 71, 126 |
| abstract_inverted_index.were | 125, 139, 166, 224 |
| abstract_inverted_index.with | 65, 182 |
| abstract_inverted_index.Laval | 55, 236 |
| abstract_inverted_index.SMAUG | 1 |
| abstract_inverted_index.Using | 130, 214 |
| abstract_inverted_index.cold) | 103 |
| abstract_inverted_index.given | 191 |
| abstract_inverted_index.rapid | 203 |
| abstract_inverted_index.setup | 86 |
| abstract_inverted_index.small | 53 |
| abstract_inverted_index.while | 162, 185 |
| abstract_inverted_index.(CRDS) | 69 |
| abstract_inverted_index.carbon | 119 |
| abstract_inverted_index.cavity | 66, 240 |
| abstract_inverted_index.energy | 209 |
| abstract_inverted_index.flows) | 10 |
| abstract_inverted_index.gases, | 118 |
| abstract_inverted_index.levels | 210 |
| abstract_inverted_index.needed | 42 |
| abstract_inverted_index.nozzle | 56, 237 |
| abstract_inverted_index.polyad | 192 |
| abstract_inverted_index.source | 63 |
| abstract_inverted_index.within | 189 |
| abstract_inverted_index.39(3)~K | 157 |
| abstract_inverted_index.CRDS” | 217 |
| abstract_inverted_index.Uniform | 8 |
| abstract_inverted_index.between | 176, 206 |
| abstract_inverted_index.compact | 60 |
| abstract_inverted_index.complex | 110 |
| abstract_inverted_index.leading | 146 |
| abstract_inverted_index.methane | 123 |
| abstract_inverted_index.non-LTE | 131, 239 |
| abstract_inverted_index.operate | 88 |
| abstract_inverted_index.pattern | 111 |
| abstract_inverted_index.polyad. | 213 |
| abstract_inverted_index.polyads | 178 |
| abstract_inverted_index.produce | 14, 73 |
| abstract_inverted_index.spectra | 16, 76, 223 |
| abstract_inverted_index.states. | 115 |
| abstract_inverted_index.various | 18 |
| abstract_inverted_index.working | 93 |
| abstract_inverted_index.CH$_{4}$ | 221 |
| abstract_inverted_index.enthalpy | 62 |
| abstract_inverted_index.equipped | 64 |
| abstract_inverted_index.infrared | 75, 144 |
| abstract_inverted_index.interest | 21 |
| abstract_inverted_index.measured | 159 |
| abstract_inverted_index.modelled | 194 |
| abstract_inverted_index.monoxide | 120 |
| abstract_inverted_index.observed | 171 |
| abstract_inverted_index.profiles | 48 |
| abstract_inverted_index.reaching | 32 |
| abstract_inverted_index.recorded | 143, 225 |
| abstract_inverted_index.regimes: | 94 |
| abstract_inverted_index.retrieve | 44 |
| abstract_inverted_index.ringdown | 67, 241 |
| abstract_inverted_index.spectra. | 51 |
| abstract_inverted_index.spectrum | 145 |
| abstract_inverted_index.(non-LTE) | 98 |
| abstract_inverted_index.Jupiters, | 31 |
| abstract_inverted_index.Molecules | 5 |
| abstract_inverted_index.\\emph{et | 232 |
| abstract_inverted_index.according | 89 |
| abstract_inverted_index.apparatus | 2 |
| abstract_inverted_index.connected | 57 |
| abstract_inverted_index.correctly | 180, 195 |
| abstract_inverted_index.described | 181 |
| abstract_inverted_index.developed | 12 |
| abstract_inverted_index.different | 117 |
| abstract_inverted_index.dimension | 54 |
| abstract_inverted_index.extracted | 140 |
| abstract_inverted_index.interpret | 108 |
| abstract_inverted_index.molecules | 19, 79 |
| abstract_inverted_index.necessary | 167 |
| abstract_inverted_index.non-local | 95 |
| abstract_inverted_index.reproduce | 169 |
| abstract_inverted_index.technique | 218 |
| abstract_inverted_index.(CH$_{4}$) | 124 |
| abstract_inverted_index.conditions | 132 |
| abstract_inverted_index.hypersonic | 235 |
| abstract_inverted_index.molecules. | 129 |
| abstract_inverted_index.polyatomic | 78 |
| abstract_inverted_index.population | 174, 187 |
| abstract_inverted_index.relaxation | 205 |
| abstract_inverted_index.rotational | 136, 154 |
| abstract_inverted_index.testifying | 199 |
| abstract_inverted_index.(T$_{rot}$) | 137 |
| abstract_inverted_index.(T$_{vib}$) | 134 |
| abstract_inverted_index.Accelerated | 6 |
| abstract_inverted_index.conditions, | 106 |
| abstract_inverted_index.equilibrium | 97 |
| abstract_inverted_index.surrounding | 29 |
| abstract_inverted_index.temperature | 45, 155 |
| abstract_inverted_index.vibrational | 114, 133, 164, 177, 204, 208 |
| abstract_inverted_index.1.67~$\\mu$m | 82 |
| abstract_inverted_index.astronomical | 50 |
| abstract_inverted_index.atmospheres, | 25 |
| abstract_inverted_index.constituting | 211 |
| abstract_inverted_index.distribution | 175, 188 |
| abstract_inverted_index.experimental | 85 |
| abstract_inverted_index.intensities. | 172 |
| abstract_inverted_index.rotationally | 102 |
| abstract_inverted_index.spectroscopy | 68 |
| abstract_inverted_index.temperatures | 138, 165 |
| abstract_inverted_index.(Spectroscopy | 3 |
| abstract_inverted_index.astrophysical | 24 |
| abstract_inverted_index.complementary | 92 |
| abstract_inverted_index.concentration | 47 |
| abstract_inverted_index.spectroscopic | 39 |
| abstract_inverted_index.spectroscopy. | 242 |
| abstract_inverted_index.thermodynamic | 96 |
| abstract_inverted_index.“post-shock | 216 |
| abstract_inverted_index.(vibrationally | 99 |
| abstract_inverted_index.highly-excited | 113 |
| abstract_inverted_index.region.$^{a}$. | 83 |
| abstract_inverted_index.high-resolution | 74 |
| abstract_inverted_index.2020;152:134201. | 246 |
| abstract_inverted_index.High-temperature | 37, 234 |
| abstract_inverted_index.T$_{rot}$~=~12(1)~K | 150 |
| abstract_inverted_index.T$_{vib}$~=~1346(52)~K | 148 |
| abstract_inverted_index.T$_{vib,II}$~=~39(5)~K" | 197 |
| abstract_inverted_index.T$_{vib,I}$~=~825(50)~K" | 183 |
| abstract_inverted_index.https://doi.org/10.1063/5.0003886.} | 247 |
| abstract_inverted_index.K.\\\\\n$^{a}$\\textit{E.Dud$\\acute{a}$s | 231 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.46518625 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |