High-Throughput Screening and Accurate Prediction of Ionic Liquid Viscosities Using Interpretable Machine Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1021/acssuschemeng.4c00631
Ionic liquids (ILs) are a novel group of green solvents with great promise for various industrial applications, including carbon capture and lignocellulosic biomass deconstruction. However, the use of ILs at the industrial scale remains challenging due to their high viscosities at ambient temperatures. To develop ILs with lower viscosities, a systematic study of their quantitative structure–property relationship (QSPR) is desirable. Here, we developed four machine learning (ML) models to predict viscosity at various temperature and pressure ranges, trained over a wide range of ILs consisting of various cationic and anionic families. ML methods including two-factor polynomial regression (two-factor PR), support vector regression (SVR), feed-forward neural networks (FFNN), and categorical boosting (CATBoost) were developed based on features that have proven useful in previous ML studies: COSMO-RS (conductor-like screening model for real solvents)-derived surface screening charge densities (sigma profiles). FFNN and CATBoost were the most accurate in predicting IL viscosities with lower average absolute relative deviation and higher R2 values on the test set. Tanimoto similarity scores were calculated to characterize the chemical space and structural similarity of the investigated ions. Furthermore, SHapley Additive exPlanation (SHAP) analysis was employed to interpret the ML results. Temperature, the polar area of ILs, and the nonpolar regions of ions are key features that influence the viscosity predictions. Importantly, the IL viscosity prediction here is the most accurate reported to date.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acssuschemeng.4c00631
- OA Status
- green
- Cited By
- 21
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4395026338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4395026338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acssuschemeng.4c00631Digital Object Identifier
- Title
-
High-Throughput Screening and Accurate Prediction of Ionic Liquid Viscosities Using Interpretable Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-23Full publication date if available
- Authors
-
Mood Mohan, Karuna Devi Jetti, Sreelekha Guggilam, Micholas Dean Smith, Michelle K. Kidder, Jeremy C. SmithList of authors in order
- Landing page
-
https://doi.org/10.1021/acssuschemeng.4c00631Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/servlets/purl/2345312Direct OA link when available
- Concepts
-
Ionic liquid, Viscosity, Quantitative structure–activity relationship, Linear regression, Machine learning, Test set, Support vector machine, Artificial intelligence, Chemistry, Biological system, Computer science, Materials science, Organic chemistry, Catalysis, Composite material, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4395026338 |
|---|---|
| doi | https://doi.org/10.1021/acssuschemeng.4c00631 |
| ids.doi | https://doi.org/10.1021/acssuschemeng.4c00631 |
| ids.openalex | https://openalex.org/W4395026338 |
| fwci | 4.17528797 |
| type | article |
| title | High-Throughput Screening and Accurate Prediction of Ionic Liquid Viscosities Using Interpretable Machine Learning |
| awards[0].id | https://openalex.org/G2972891248 |
| awards[0].funder_id | https://openalex.org/F4320337480 |
| awards[0].display_name | |
| awards[0].funder_award_id | DE-SC0022214 |
| awards[0].funder_display_name | Basic Energy Sciences |
| awards[1].id | https://openalex.org/G8822719238 |
| awards[1].funder_id | https://openalex.org/F4320337509 |
| awards[1].display_name | |
| awards[1].funder_award_id | FWP ERKP752 |
| awards[1].funder_display_name | Biological and Environmental Research |
| awards[2].id | https://openalex.org/G3799866368 |
| awards[2].funder_id | https://openalex.org/F4320337480 |
| awards[2].display_name | |
| awards[2].funder_award_id | FWP 3ERKCG25 |
| awards[2].funder_display_name | Basic Energy Sciences |
| biblio.issue | 18 |
| biblio.volume | 12 |
| biblio.last_page | 7054 |
| biblio.first_page | 7040 |
| topics[0].id | https://openalex.org/T10480 |
| topics[0].field.id | https://openalex.org/fields/15 |
| topics[0].field.display_name | Chemical Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1503 |
| topics[0].subfield.display_name | Catalysis |
| topics[0].display_name | Ionic liquids properties and applications |
| topics[1].id | https://openalex.org/T11434 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1603 |
| topics[1].subfield.display_name | Electrochemistry |
| topics[1].display_name | Electrochemical Analysis and Applications |
| topics[2].id | https://openalex.org/T13180 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.929099977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2304 |
| topics[2].subfield.display_name | Environmental Chemistry |
| topics[2].display_name | Chemistry and Chemical Engineering |
| funders[0].id | https://openalex.org/F4320337480 |
| funders[0].ror | https://ror.org/05mg91w61 |
| funders[0].display_name | Basic Energy Sciences |
| funders[1].id | https://openalex.org/F4320337509 |
| funders[1].ror | https://ror.org/0114b2m14 |
| funders[1].display_name | Biological and Environmental Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154881586 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7646151781082153 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q898579 |
| concepts[0].display_name | Ionic liquid |
| concepts[1].id | https://openalex.org/C127172972 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5642966032028198 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q128709 |
| concepts[1].display_name | Viscosity |
| concepts[2].id | https://openalex.org/C164126121 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5246620178222656 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q766383 |
| concepts[2].display_name | Quantitative structure–activity relationship |
| concepts[3].id | https://openalex.org/C48921125 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4990994930267334 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[3].display_name | Linear regression |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4850549101829529 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C169903167 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4837801158428192 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[5].display_name | Test set |
| concepts[6].id | https://openalex.org/C12267149 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47133922576904297 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[6].display_name | Support vector machine |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4166376292705536 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.40821778774261475 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C186060115 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39602938294410706 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[9].display_name | Biological system |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3128397464752197 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2504047751426697 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C178790620 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17014533281326294 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[12].display_name | Organic chemistry |
| concepts[13].id | https://openalex.org/C161790260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q82264 |
| concepts[13].display_name | Catalysis |
| concepts[14].id | https://openalex.org/C159985019 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[14].display_name | Composite material |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/ionic-liquid |
| keywords[0].score | 0.7646151781082153 |
| keywords[0].display_name | Ionic liquid |
| keywords[1].id | https://openalex.org/keywords/viscosity |
| keywords[1].score | 0.5642966032028198 |
| keywords[1].display_name | Viscosity |
| keywords[2].id | https://openalex.org/keywords/quantitative-structure–activity-relationship |
| keywords[2].score | 0.5246620178222656 |
| keywords[2].display_name | Quantitative structure–activity relationship |
| keywords[3].id | https://openalex.org/keywords/linear-regression |
| keywords[3].score | 0.4990994930267334 |
| keywords[3].display_name | Linear regression |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4850549101829529 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/test-set |
| keywords[5].score | 0.4837801158428192 |
| keywords[5].display_name | Test set |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.47133922576904297 |
| keywords[6].display_name | Support vector machine |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4166376292705536 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.40821778774261475 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/biological-system |
| keywords[9].score | 0.39602938294410706 |
| keywords[9].display_name | Biological system |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3128397464752197 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/materials-science |
| keywords[11].score | 0.2504047751426697 |
| keywords[11].display_name | Materials science |
| keywords[12].id | https://openalex.org/keywords/organic-chemistry |
| keywords[12].score | 0.17014533281326294 |
| keywords[12].display_name | Organic chemistry |
| language | en |
| locations[0].id | doi:10.1021/acssuschemeng.4c00631 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2502047864 |
| locations[0].source.issn | 2168-0485 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-0485 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACS Sustainable Chemistry & Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACS Sustainable Chemistry & Engineering |
| locations[0].landing_page_url | https://doi.org/10.1021/acssuschemeng.4c00631 |
| locations[1].id | pmh:oai:osti.gov:2345312 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | https://www.osti.gov/servlets/purl/2345312 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2345312 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049538093 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5937-9746 |
| authorships[0].author.display_name | Mood Mohan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[0].affiliations[0].raw_affiliation_string | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[0].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[0].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mood Mohan |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[1].author.id | https://openalex.org/A5026750606 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Karuna Devi Jetti |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I885392262 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biotechnology, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India |
| authorships[1].institutions[0].id | https://openalex.org/I885392262 |
| authorships[1].institutions[0].ror | https://ror.org/0440p1d37 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I885392262 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | GITAM University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Karuna Devi Jetti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biotechnology, GIS, GITAM, Visakhapatnam, Andhra Pradesh 530045, India |
| authorships[2].author.id | https://openalex.org/A5044373160 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7795-2945 |
| authorships[2].author.display_name | Sreelekha Guggilam |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[2].affiliations[0].raw_affiliation_string | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[2].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[2].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sreelekha Guggilam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[3].author.id | https://openalex.org/A5039215754 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0777-7539 |
| authorships[3].author.display_name | Micholas Dean Smith |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1289243028 |
| authorships[3].affiliations[1].raw_affiliation_string | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[3].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[3].institutions[1].id | https://openalex.org/I75027704 |
| authorships[3].institutions[1].ror | https://ror.org/020f3ap87 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I75027704 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Tennessee at Knoxville |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Micholas Dean Smith |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States |
| authorships[4].author.id | https://openalex.org/A5064754290 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0851-835X |
| authorships[4].author.display_name | Michelle K. Kidder |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[4].affiliations[0].raw_affiliation_string | Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6201, United States |
| authorships[4].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[4].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Michelle K. Kidder |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6201, United States |
| authorships[5].author.id | https://openalex.org/A5018366869 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2978-3227 |
| authorships[5].author.display_name | Jeremy C. Smith |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I1289243028 |
| authorships[5].affiliations[1].raw_affiliation_string | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States |
| authorships[5].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[5].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[5].institutions[1].id | https://openalex.org/I75027704 |
| authorships[5].institutions[1].ror | https://ror.org/020f3ap87 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I75027704 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | University of Tennessee at Knoxville |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jeremy C. Smith |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Biosciences Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/servlets/purl/2345312 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-Throughput Screening and Accurate Prediction of Ionic Liquid Viscosities Using Interpretable Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10480 |
| primary_topic.field.id | https://openalex.org/fields/15 |
| primary_topic.field.display_name | Chemical Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1503 |
| primary_topic.subfield.display_name | Catalysis |
| primary_topic.display_name | Ionic liquids properties and applications |
| related_works | https://openalex.org/W2033669961, https://openalex.org/W2552368679, https://openalex.org/W2083497194, https://openalex.org/W1983510392, https://openalex.org/W3207991896, https://openalex.org/W2091858309, https://openalex.org/W2080075000, https://openalex.org/W2067050868, https://openalex.org/W2895516988, https://openalex.org/W2081441544 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2345312 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.osti.gov/servlets/purl/2345312 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2345312 |
| primary_location.id | doi:10.1021/acssuschemeng.4c00631 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2502047864 |
| primary_location.source.issn | 2168-0485 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-0485 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACS Sustainable Chemistry & Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACS Sustainable Chemistry & Engineering |
| primary_location.landing_page_url | https://doi.org/10.1021/acssuschemeng.4c00631 |
| publication_date | 2024-04-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2301085974, https://openalex.org/W2090167324, https://openalex.org/W2122250145, https://openalex.org/W2613263932, https://openalex.org/W1989947640, https://openalex.org/W1995258983, https://openalex.org/W2127960667, https://openalex.org/W2431612173, https://openalex.org/W2512641609, https://openalex.org/W4224284942, https://openalex.org/W4205306242, https://openalex.org/W4281485972, https://openalex.org/W2300826179, https://openalex.org/W2314893152, https://openalex.org/W2471013855, https://openalex.org/W2315681812, https://openalex.org/W2039465367, https://openalex.org/W2005307077, https://openalex.org/W3143102947, https://openalex.org/W2002207707, https://openalex.org/W2015435291, https://openalex.org/W2127853152, https://openalex.org/W2767373012, https://openalex.org/W3099667262, https://openalex.org/W4322709406, https://openalex.org/W4378952971, https://openalex.org/W4376109005, https://openalex.org/W4307032851, https://openalex.org/W4229061407, https://openalex.org/W4285394863, https://openalex.org/W2085231127, https://openalex.org/W2076953247, https://openalex.org/W2351747024, https://openalex.org/W2605299208, https://openalex.org/W4283069480, https://openalex.org/W4312053649, https://openalex.org/W4378977377, https://openalex.org/W3198576770, https://openalex.org/W3134811799, https://openalex.org/W4226408629, https://openalex.org/W2092872388, https://openalex.org/W3003674041, https://openalex.org/W2052634938, https://openalex.org/W2465471499, https://openalex.org/W1987127228, https://openalex.org/W2102458228, https://openalex.org/W4294663700, https://openalex.org/W2100071548, https://openalex.org/W3187163767, https://openalex.org/W2072537419, https://openalex.org/W1993002767, https://openalex.org/W2132795750, https://openalex.org/W2170973067, https://openalex.org/W2899070097, https://openalex.org/W2006508993, https://openalex.org/W2095336127, https://openalex.org/W1596717185, https://openalex.org/W2898227265, https://openalex.org/W3094948551, https://openalex.org/W2295598076, https://openalex.org/W2977137620, https://openalex.org/W4392022789, https://openalex.org/W4376890861, https://openalex.org/W2994280181, https://openalex.org/W4322493324, https://openalex.org/W1988037271, https://openalex.org/W2968378480, https://openalex.org/W2093737637, https://openalex.org/W1990451437, https://openalex.org/W2151697120, https://openalex.org/W1984994707, https://openalex.org/W3107142233, https://openalex.org/W2794564561, https://openalex.org/W2782958502, https://openalex.org/W3117380819, https://openalex.org/W2750609885, https://openalex.org/W2047376058, https://openalex.org/W2891051748, https://openalex.org/W2066107688, https://openalex.org/W2153089029, https://openalex.org/W1664358972, https://openalex.org/W2464679422, https://openalex.org/W2324514198, https://openalex.org/W4306767412, https://openalex.org/W4385431477, https://openalex.org/W2912083425, https://openalex.org/W4230674625, https://openalex.org/W4214777302, https://openalex.org/W2414319411 |
| referenced_works_count | 89 |
| abstract_inverted_index.a | 4, 49, 79 |
| abstract_inverted_index.IL | 146, 214 |
| abstract_inverted_index.ML | 91, 122, 190 |
| abstract_inverted_index.R2 | 156 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.at | 29, 40, 71 |
| abstract_inverted_index.in | 120, 144 |
| abstract_inverted_index.is | 58, 218 |
| abstract_inverted_index.of | 7, 27, 52, 82, 85, 175, 196, 202 |
| abstract_inverted_index.on | 114, 158 |
| abstract_inverted_index.to | 36, 68, 167, 187, 223 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.ILs | 28, 45, 83 |
| abstract_inverted_index.and | 20, 74, 88, 107, 138, 154, 172, 198 |
| abstract_inverted_index.are | 3, 204 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.for | 13, 128 |
| abstract_inverted_index.key | 205 |
| abstract_inverted_index.the | 25, 30, 141, 159, 169, 176, 189, 193, 199, 209, 213, 219 |
| abstract_inverted_index.use | 26 |
| abstract_inverted_index.was | 185 |
| abstract_inverted_index.(ML) | 66 |
| abstract_inverted_index.FFNN | 137 |
| abstract_inverted_index.ILs, | 197 |
| abstract_inverted_index.PR), | 98 |
| abstract_inverted_index.area | 195 |
| abstract_inverted_index.four | 63 |
| abstract_inverted_index.have | 117 |
| abstract_inverted_index.here | 217 |
| abstract_inverted_index.high | 38 |
| abstract_inverted_index.ions | 203 |
| abstract_inverted_index.most | 142, 220 |
| abstract_inverted_index.over | 78 |
| abstract_inverted_index.real | 129 |
| abstract_inverted_index.set. | 161 |
| abstract_inverted_index.test | 160 |
| abstract_inverted_index.that | 116, 207 |
| abstract_inverted_index.were | 111, 140, 165 |
| abstract_inverted_index.wide | 80 |
| abstract_inverted_index.with | 10, 46, 148 |
| abstract_inverted_index.(ILs) | 2 |
| abstract_inverted_index.Here, | 60 |
| abstract_inverted_index.Ionic | 0 |
| abstract_inverted_index.based | 113 |
| abstract_inverted_index.date. | 224 |
| abstract_inverted_index.great | 11 |
| abstract_inverted_index.green | 8 |
| abstract_inverted_index.group | 6 |
| abstract_inverted_index.ions. | 178 |
| abstract_inverted_index.lower | 47, 149 |
| abstract_inverted_index.model | 127 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.polar | 194 |
| abstract_inverted_index.range | 81 |
| abstract_inverted_index.scale | 32 |
| abstract_inverted_index.space | 171 |
| abstract_inverted_index.study | 51 |
| abstract_inverted_index.their | 37, 53 |
| abstract_inverted_index.(QSPR) | 57 |
| abstract_inverted_index.(SHAP) | 183 |
| abstract_inverted_index.(SVR), | 102 |
| abstract_inverted_index.(sigma | 135 |
| abstract_inverted_index.carbon | 18 |
| abstract_inverted_index.charge | 133 |
| abstract_inverted_index.higher | 155 |
| abstract_inverted_index.models | 67 |
| abstract_inverted_index.neural | 104 |
| abstract_inverted_index.proven | 118 |
| abstract_inverted_index.scores | 164 |
| abstract_inverted_index.useful | 119 |
| abstract_inverted_index.values | 157 |
| abstract_inverted_index.vector | 100 |
| abstract_inverted_index.(FFNN), | 106 |
| abstract_inverted_index.SHapley | 180 |
| abstract_inverted_index.ambient | 41 |
| abstract_inverted_index.anionic | 89 |
| abstract_inverted_index.average | 150 |
| abstract_inverted_index.biomass | 22 |
| abstract_inverted_index.capture | 19 |
| abstract_inverted_index.develop | 44 |
| abstract_inverted_index.liquids | 1 |
| abstract_inverted_index.machine | 64 |
| abstract_inverted_index.methods | 92 |
| abstract_inverted_index.predict | 69 |
| abstract_inverted_index.promise | 12 |
| abstract_inverted_index.ranges, | 76 |
| abstract_inverted_index.regions | 201 |
| abstract_inverted_index.remains | 33 |
| abstract_inverted_index.support | 99 |
| abstract_inverted_index.surface | 131 |
| abstract_inverted_index.trained | 77 |
| abstract_inverted_index.various | 14, 72, 86 |
| abstract_inverted_index.Additive | 181 |
| abstract_inverted_index.CATBoost | 139 |
| abstract_inverted_index.COSMO-RS | 124 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Tanimoto | 162 |
| abstract_inverted_index.absolute | 151 |
| abstract_inverted_index.accurate | 143, 221 |
| abstract_inverted_index.analysis | 184 |
| abstract_inverted_index.boosting | 109 |
| abstract_inverted_index.cationic | 87 |
| abstract_inverted_index.chemical | 170 |
| abstract_inverted_index.employed | 186 |
| abstract_inverted_index.features | 115, 206 |
| abstract_inverted_index.learning | 65 |
| abstract_inverted_index.networks | 105 |
| abstract_inverted_index.nonpolar | 200 |
| abstract_inverted_index.pressure | 75 |
| abstract_inverted_index.previous | 121 |
| abstract_inverted_index.relative | 152 |
| abstract_inverted_index.reported | 222 |
| abstract_inverted_index.results. | 191 |
| abstract_inverted_index.solvents | 9 |
| abstract_inverted_index.studies: | 123 |
| abstract_inverted_index.densities | 134 |
| abstract_inverted_index.developed | 62, 112 |
| abstract_inverted_index.deviation | 153 |
| abstract_inverted_index.families. | 90 |
| abstract_inverted_index.including | 17, 93 |
| abstract_inverted_index.influence | 208 |
| abstract_inverted_index.interpret | 188 |
| abstract_inverted_index.screening | 126, 132 |
| abstract_inverted_index.viscosity | 70, 210, 215 |
| abstract_inverted_index.(CATBoost) | 110 |
| abstract_inverted_index.calculated | 166 |
| abstract_inverted_index.consisting | 84 |
| abstract_inverted_index.desirable. | 59 |
| abstract_inverted_index.industrial | 15, 31 |
| abstract_inverted_index.polynomial | 95 |
| abstract_inverted_index.predicting | 145 |
| abstract_inverted_index.prediction | 216 |
| abstract_inverted_index.profiles). | 136 |
| abstract_inverted_index.regression | 96, 101 |
| abstract_inverted_index.similarity | 163, 174 |
| abstract_inverted_index.structural | 173 |
| abstract_inverted_index.systematic | 50 |
| abstract_inverted_index.two-factor | 94 |
| abstract_inverted_index.(two-factor | 97 |
| abstract_inverted_index.categorical | 108 |
| abstract_inverted_index.challenging | 34 |
| abstract_inverted_index.exPlanation | 182 |
| abstract_inverted_index.temperature | 73 |
| abstract_inverted_index.viscosities | 39, 147 |
| abstract_inverted_index.Furthermore, | 179 |
| abstract_inverted_index.Importantly, | 212 |
| abstract_inverted_index.Temperature, | 192 |
| abstract_inverted_index.characterize | 168 |
| abstract_inverted_index.feed-forward | 103 |
| abstract_inverted_index.investigated | 177 |
| abstract_inverted_index.predictions. | 211 |
| abstract_inverted_index.quantitative | 54 |
| abstract_inverted_index.relationship | 56 |
| abstract_inverted_index.viscosities, | 48 |
| abstract_inverted_index.applications, | 16 |
| abstract_inverted_index.temperatures. | 42 |
| abstract_inverted_index.(conductor-like | 125 |
| abstract_inverted_index.deconstruction. | 23 |
| abstract_inverted_index.lignocellulosic | 21 |
| abstract_inverted_index.solvents)-derived | 130 |
| abstract_inverted_index.structure–property | 55 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5049538093, https://openalex.org/A5018366869 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I1289243028, https://openalex.org/I75027704 |
| citation_normalized_percentile.value | 0.93013415 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |