High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1039/c8mt00342d
One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 μM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure–activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1039/c8mt00342d
- OA Status
- green
- Cited By
- 32
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2916672662
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2916672662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1039/c8mt00342dDigital Object Identifier
- Title
-
High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureusWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-22Full publication date if available
- Authors
-
Alex G. Dalecki, Kimberley M. Zorn, Alex M. Clark, Sean Ekins, Whitney Narmore, Nichole A. Tower, Lynn Rasmussen, Robert Bostwick, Olaf Kutsch, Frank WolschendorfList of authors in order
- Landing page
-
https://doi.org/10.1039/c8mt00342dPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/6467072Direct OA link when available
- Concepts
-
Copper, Chemistry, Combinatorial chemistry, In silico, Cheminformatics, Ligand (biochemistry), Staphylococcus aureus, Computational biology, Biochemistry, Biology, Computational chemistry, Bacteria, Organic chemistry, Receptor, Genetics, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 3, 2022: 4, 2021: 10, 2020: 11Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2916672662 |
|---|---|
| doi | https://doi.org/10.1039/c8mt00342d |
| ids.doi | https://doi.org/10.1039/c8mt00342d |
| ids.mag | 2916672662 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/30839007 |
| ids.openalex | https://openalex.org/W2916672662 |
| fwci | 4.55882532 |
| mesh[0].qualifier_ui | Q000737 |
| mesh[0].descriptor_ui | D000900 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | chemistry |
| mesh[0].descriptor_name | Anti-Bacterial Agents |
| mesh[1].qualifier_ui | Q000494 |
| mesh[1].descriptor_ui | D000900 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | pharmacology |
| mesh[1].descriptor_name | Anti-Bacterial Agents |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001499 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Bayes Theorem |
| mesh[3].qualifier_ui | Q000737 |
| mesh[3].descriptor_ui | D003300 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | chemistry |
| mesh[3].descriptor_name | Copper |
| mesh[4].qualifier_ui | Q000494 |
| mesh[4].descriptor_ui | D003300 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | pharmacology |
| mesh[4].descriptor_name | Copper |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D057166 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | High-Throughput Screening Assays |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D008826 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Microbial Sensitivity Tests |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D054852 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Small Molecule Libraries |
| mesh[9].qualifier_ui | Q000187 |
| mesh[9].descriptor_ui | D013211 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | drug effects |
| mesh[9].descriptor_name | Staphylococcus aureus |
| mesh[10].qualifier_ui | Q000737 |
| mesh[10].descriptor_ui | D000900 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | chemistry |
| mesh[10].descriptor_name | Anti-Bacterial Agents |
| mesh[11].qualifier_ui | Q000494 |
| mesh[11].descriptor_ui | D000900 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | pharmacology |
| mesh[11].descriptor_name | Anti-Bacterial Agents |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D001499 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Bayes Theorem |
| mesh[13].qualifier_ui | Q000737 |
| mesh[13].descriptor_ui | D003300 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | chemistry |
| mesh[13].descriptor_name | Copper |
| mesh[14].qualifier_ui | Q000494 |
| mesh[14].descriptor_ui | D003300 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | pharmacology |
| mesh[14].descriptor_name | Copper |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D057166 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | High-Throughput Screening Assays |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000069550 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Machine Learning |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D008826 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Microbial Sensitivity Tests |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D054852 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Small Molecule Libraries |
| mesh[19].qualifier_ui | Q000187 |
| mesh[19].descriptor_ui | D013211 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | drug effects |
| mesh[19].descriptor_name | Staphylococcus aureus |
| type | article |
| title | High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus |
| awards[0].id | https://openalex.org/G6759284560 |
| awards[0].funder_id | https://openalex.org/F4320337354 |
| awards[0].display_name | |
| awards[0].funder_award_id | R44GM122196-02A1 |
| awards[0].funder_display_name | National Institute of General Medical Sciences |
| awards[1].id | https://openalex.org/G8041413310 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01AI121364 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G2698721860 |
| awards[2].funder_id | https://openalex.org/F4320332161 |
| awards[2].display_name | |
| awards[2].funder_award_id | R43GM122196 |
| awards[2].funder_display_name | National Institutes of Health |
| biblio.issue | 3 |
| biblio.volume | 11 |
| biblio.last_page | 706 |
| biblio.first_page | 696 |
| topics[0].id | https://openalex.org/T10038 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | Tuberculosis Research and Epidemiology |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10274 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9812999963760376 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1605 |
| topics[2].subfield.display_name | Organic Chemistry |
| topics[2].display_name | Synthesis and biological activity |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337354 |
| funders[1].ror | https://ror.org/04q48ey07 |
| funders[1].display_name | National Institute of General Medical Sciences |
| is_xpac | False |
| apc_list.value | 2319 |
| apc_list.currency | USD |
| apc_list.value_usd | 2319 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C544778455 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6931215524673462 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q753 |
| concepts[0].display_name | Copper |
| concepts[1].id | https://openalex.org/C185592680 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5785244703292847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[1].display_name | Chemistry |
| concepts[2].id | https://openalex.org/C21951064 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5512146949768066 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q899212 |
| concepts[2].display_name | Combinatorial chemistry |
| concepts[3].id | https://openalex.org/C2775905019 |
| concepts[3].level | 3 |
| concepts[3].score | 0.545747697353363 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[3].display_name | In silico |
| concepts[4].id | https://openalex.org/C68762167 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49124234914779663 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q910164 |
| concepts[4].display_name | Cheminformatics |
| concepts[5].id | https://openalex.org/C116569031 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4388006925582886 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q899107 |
| concepts[5].display_name | Ligand (biochemistry) |
| concepts[6].id | https://openalex.org/C2779489039 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4307178258895874 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188121 |
| concepts[6].display_name | Staphylococcus aureus |
| concepts[7].id | https://openalex.org/C70721500 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38399994373321533 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[7].display_name | Computational biology |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1880914270877838 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1812858283519745 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C147597530 |
| concepts[10].level | 1 |
| concepts[10].score | 0.18068692088127136 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[10].display_name | Computational chemistry |
| concepts[11].id | https://openalex.org/C523546767 |
| concepts[11].level | 2 |
| concepts[11].score | 0.16143262386322021 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q10876 |
| concepts[11].display_name | Bacteria |
| concepts[12].id | https://openalex.org/C178790620 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12584635615348816 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[12].display_name | Organic chemistry |
| concepts[13].id | https://openalex.org/C170493617 |
| concepts[13].level | 2 |
| concepts[13].score | 0.09854498505592346 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q208467 |
| concepts[13].display_name | Receptor |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0906597375869751 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/copper |
| keywords[0].score | 0.6931215524673462 |
| keywords[0].display_name | Copper |
| keywords[1].id | https://openalex.org/keywords/chemistry |
| keywords[1].score | 0.5785244703292847 |
| keywords[1].display_name | Chemistry |
| keywords[2].id | https://openalex.org/keywords/combinatorial-chemistry |
| keywords[2].score | 0.5512146949768066 |
| keywords[2].display_name | Combinatorial chemistry |
| keywords[3].id | https://openalex.org/keywords/in-silico |
| keywords[3].score | 0.545747697353363 |
| keywords[3].display_name | In silico |
| keywords[4].id | https://openalex.org/keywords/cheminformatics |
| keywords[4].score | 0.49124234914779663 |
| keywords[4].display_name | Cheminformatics |
| keywords[5].id | https://openalex.org/keywords/ligand |
| keywords[5].score | 0.4388006925582886 |
| keywords[5].display_name | Ligand (biochemistry) |
| keywords[6].id | https://openalex.org/keywords/staphylococcus-aureus |
| keywords[6].score | 0.4307178258895874 |
| keywords[6].display_name | Staphylococcus aureus |
| keywords[7].id | https://openalex.org/keywords/computational-biology |
| keywords[7].score | 0.38399994373321533 |
| keywords[7].display_name | Computational biology |
| keywords[8].id | https://openalex.org/keywords/biochemistry |
| keywords[8].score | 0.1880914270877838 |
| keywords[8].display_name | Biochemistry |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.1812858283519745 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/computational-chemistry |
| keywords[10].score | 0.18068692088127136 |
| keywords[10].display_name | Computational chemistry |
| keywords[11].id | https://openalex.org/keywords/bacteria |
| keywords[11].score | 0.16143262386322021 |
| keywords[11].display_name | Bacteria |
| keywords[12].id | https://openalex.org/keywords/organic-chemistry |
| keywords[12].score | 0.12584635615348816 |
| keywords[12].display_name | Organic chemistry |
| keywords[13].id | https://openalex.org/keywords/receptor |
| keywords[13].score | 0.09854498505592346 |
| keywords[13].display_name | Receptor |
| keywords[14].id | https://openalex.org/keywords/genetics |
| keywords[14].score | 0.0906597375869751 |
| keywords[14].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1039/c8mt00342d |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S134674912 |
| locations[0].source.issn | 1756-5901, 1756-591X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1756-5901 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Metallomics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Metallomics |
| locations[0].landing_page_url | https://doi.org/10.1039/c8mt00342d |
| locations[1].id | pmid:30839007 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Metallomics : integrated biometal science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/30839007 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:6467072 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Metallomics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6467072 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5039726737 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2625-9964 |
| authorships[0].author.display_name | Alex G. Dalecki |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32389192 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[0].institutions[0].id | https://openalex.org/I32389192 |
| authorships[0].institutions[0].ror | https://ror.org/008s83205 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alex G Dalecki |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[1].author.id | https://openalex.org/A5040232853 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kimberley M. Zorn |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210148032 |
| authorships[1].affiliations[0].raw_affiliation_string | Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210148032 |
| authorships[1].institutions[0].ror | https://ror.org/04m718665 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210148032 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Collaborations Pharmaceuticals (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kimberley M Zorn |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA |
| authorships[2].author.id | https://openalex.org/A5034678376 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3395-4666 |
| authorships[2].author.display_name | Alex M. Clark |
| authorships[2].affiliations[0].raw_affiliation_string | Molecular Materials Informatics, Inc., 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alex M Clark |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Molecular Materials Informatics, Inc., 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada |
| authorships[3].author.id | https://openalex.org/A5073973321 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5691-5790 |
| authorships[3].author.display_name | Sean Ekins |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210148032 |
| authorships[3].affiliations[0].raw_affiliation_string | Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210148032 |
| authorships[3].institutions[0].ror | https://ror.org/04m718665 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210148032 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Collaborations Pharmaceuticals (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sean Ekins |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA |
| authorships[4].author.id | https://openalex.org/A5052852106 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9761-0216 |
| authorships[4].author.display_name | Whitney Narmore |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32389192 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[4].institutions[0].id | https://openalex.org/I32389192 |
| authorships[4].institutions[0].ror | https://ror.org/008s83205 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Whitney T Narmore |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[5].author.id | https://openalex.org/A5073899962 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Nichole A. Tower |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I108109523 |
| authorships[5].affiliations[0].raw_affiliation_string | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[5].institutions[0].id | https://openalex.org/I108109523 |
| authorships[5].institutions[0].ror | https://ror.org/0153ngy95 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I108109523 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Southern Research Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nichole Tower |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[6].author.id | https://openalex.org/A5058420313 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6211-2364 |
| authorships[6].author.display_name | Lynn Rasmussen |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I108109523 |
| authorships[6].affiliations[0].raw_affiliation_string | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[6].institutions[0].id | https://openalex.org/I108109523 |
| authorships[6].institutions[0].ror | https://ror.org/0153ngy95 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I108109523 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Southern Research Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Lynn Rasmussen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[7].author.id | https://openalex.org/A5035932065 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Robert Bostwick |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I108109523 |
| authorships[7].affiliations[0].raw_affiliation_string | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[7].institutions[0].id | https://openalex.org/I108109523 |
| authorships[7].institutions[0].ror | https://ror.org/0153ngy95 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I108109523 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Southern Research Institute |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Robert Bostwick |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA |
| authorships[8].author.id | https://openalex.org/A5063447487 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1853-8023 |
| authorships[8].author.display_name | Olaf Kutsch |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I32389192 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[8].institutions[0].id | https://openalex.org/I32389192 |
| authorships[8].institutions[0].ror | https://ror.org/008s83205 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Olaf Kutsch |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[9].author.id | https://openalex.org/A5040154535 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-4113-2443 |
| authorships[9].author.display_name | Frank Wolschendorf |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I32389192 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| authorships[9].institutions[0].id | https://openalex.org/I32389192 |
| authorships[9].institutions[0].ror | https://ror.org/008s83205 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Frank Wolschendorf |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, BBRB 562, 845 19th St S, Birmingham, AL 35294, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6467072 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-03-02T00:00:00 |
| display_name | High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of Staphylococcus aureus |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10038 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | Tuberculosis Research and Epidemiology |
| related_works | https://openalex.org/W1573015311, https://openalex.org/W2889938001, https://openalex.org/W4386509167, https://openalex.org/W3165034028, https://openalex.org/W1570419641, https://openalex.org/W4293771607, https://openalex.org/W2296499206, https://openalex.org/W132037564, https://openalex.org/W3210319767, https://openalex.org/W4246770172 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 11 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:6467072 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Metallomics |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6467072 |
| primary_location.id | doi:10.1039/c8mt00342d |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S134674912 |
| primary_location.source.issn | 1756-5901, 1756-591X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1756-5901 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Metallomics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Metallomics |
| primary_location.landing_page_url | https://doi.org/10.1039/c8mt00342d |
| publication_date | 2019-02-22 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2079228339, https://openalex.org/W2099905447, https://openalex.org/W1964141703, https://openalex.org/W2127999800, https://openalex.org/W1964339096, https://openalex.org/W2324557890, https://openalex.org/W2051144562, https://openalex.org/W2049085442, https://openalex.org/W2111003641, https://openalex.org/W2051659971, https://openalex.org/W2170719923, https://openalex.org/W2048443522, https://openalex.org/W2115544494, https://openalex.org/W2084168858, https://openalex.org/W2006740258, https://openalex.org/W2769076845, https://openalex.org/W2401732390, https://openalex.org/W2083440767, https://openalex.org/W2036180531, https://openalex.org/W1978430110, https://openalex.org/W2093669662, https://openalex.org/W2169807450, https://openalex.org/W2493609747, https://openalex.org/W2808069435, https://openalex.org/W2012196995, https://openalex.org/W1905908362, https://openalex.org/W2290224180, https://openalex.org/W2160097714, https://openalex.org/W2558999090, https://openalex.org/W2114326383, https://openalex.org/W2887039457, https://openalex.org/W2801291332, https://openalex.org/W2806678503, https://openalex.org/W1546956326, https://openalex.org/W2012444866, https://openalex.org/W2155741020, https://openalex.org/W6682780409, https://openalex.org/W2053154970, https://openalex.org/W2109553965, https://openalex.org/W2161459134, https://openalex.org/W2046613566, https://openalex.org/W1968135993, https://openalex.org/W2168447130, https://openalex.org/W2344509600, https://openalex.org/W4248107770, https://openalex.org/W2096541451, https://openalex.org/W1978253274, https://openalex.org/W2148244985, https://openalex.org/W342897826, https://openalex.org/W9383344, https://openalex.org/W2401677822, https://openalex.org/W2080432215, https://openalex.org/W2043646480, https://openalex.org/W2292169515, https://openalex.org/W2261444645, https://openalex.org/W2088316235, https://openalex.org/W2153804780, https://openalex.org/W2135732933, https://openalex.org/W2597381530, https://openalex.org/W4285056727, https://openalex.org/W562669618 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 41, 51, 133, 143, 158 |
| abstract_inverted_index.40 | 58 |
| abstract_inverted_index.50 | 79 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 23, 40, 62, 65, 68, 142, 166 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 4, 26, 50, 57, 105, 160 |
| abstract_inverted_index.on | 117, 147 |
| abstract_inverted_index.to | 156, 178 |
| abstract_inverted_index.we | 46, 151 |
| abstract_inverted_index.483 | 72 |
| abstract_inverted_index.771 | 59 |
| abstract_inverted_index.One | 1 |
| abstract_inverted_index.Two | 168 |
| abstract_inverted_index.and | 67, 99, 130, 138, 171, 175 |
| abstract_inverted_index.are | 176 |
| abstract_inverted_index.for | 13, 136, 163 |
| abstract_inverted_index.had | 73 |
| abstract_inverted_index.new | 5, 134 |
| abstract_inverted_index.our | 29 |
| abstract_inverted_index.the | 24, 48, 106, 153, 184 |
| abstract_inverted_index.CDIs | 36 |
| abstract_inverted_index.IC50 | 76 |
| abstract_inverted_index.both | 64 |
| abstract_inverted_index.hits | 86 |
| abstract_inverted_index.only | 22 |
| abstract_inverted_index.that | 32, 84 |
| abstract_inverted_index.used | 152 |
| abstract_inverted_index.were | 37, 87, 125 |
| abstract_inverted_index.with | 19, 113 |
| abstract_inverted_index.μM. | 80 |
| abstract_inverted_index.Assay | 131 |
| abstract_inverted_index.CDIs, | 112 |
| abstract_inverted_index.Here, | 45 |
| abstract_inverted_index.based | 146 |
| abstract_inverted_index.built | 126 |
| abstract_inverted_index.drugs | 162 |
| abstract_inverted_index.group | 30 |
| abstract_inverted_index.i.e., | 17 |
| abstract_inverted_index.ions, | 181 |
| abstract_inverted_index.known | 177 |
| abstract_inverted_index.model | 155 |
| abstract_inverted_index.pilot | 43 |
| abstract_inverted_index.small | 42 |
| abstract_inverted_index.these | 85 |
| abstract_inverted_index.under | 78 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.Studio | 129 |
| abstract_inverted_index.copper | 180 |
| abstract_inverted_index.highly | 174 |
| abstract_inverted_index.larger | 52 |
| abstract_inverted_index.latter | 154 |
| abstract_inverted_index.likely | 115 |
| abstract_inverted_index.media. | 70 |
| abstract_inverted_index.models | 124, 141 |
| abstract_inverted_index.report | 47 |
| abstract_inverted_index.scored | 173 |
| abstract_inverted_index.screen | 55 |
| abstract_inverted_index.source | 3 |
| abstract_inverted_index.tools. | 149 |
| abstract_inverted_index.values | 77 |
| abstract_inverted_index.(CDIs), | 16 |
| abstract_inverted_index.assayed | 61 |
| abstract_inverted_index.copper. | 27 |
| abstract_inverted_index.format, | 145 |
| abstract_inverted_index.further | 182 |
| abstract_inverted_index.largely | 88 |
| abstract_inverted_index.library | 159 |
| abstract_inverted_index.model's | 185 |
| abstract_inverted_index.motifs, | 92 |
| abstract_inverted_index.outcome | 49 |
| abstract_inverted_index.present | 39 |
| abstract_inverted_index.probing | 9 |
| abstract_inverted_index.screen. | 44 |
| abstract_inverted_index.sharing | 137 |
| abstract_inverted_index.silico. | 167 |
| abstract_inverted_index.through | 8 |
| abstract_inverted_index.unknown | 34 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 122 |
| abstract_inverted_index.Central, | 132 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.activity | 21, 114, 165 |
| abstract_inverted_index.analysis | 104 |
| abstract_inverted_index.chemical | 11 |
| abstract_inverted_index.evaluate | 157 |
| abstract_inverted_index.existing | 10 |
| abstract_inverted_index.improved | 111 |
| abstract_inverted_index.multiple | 110 |
| abstract_inverted_index.platform | 135 |
| abstract_inverted_index.portable | 144 |
| abstract_inverted_index.presence | 25 |
| abstract_inverted_index.revealed | 83 |
| abstract_inverted_index.standard | 66 |
| abstract_inverted_index.Discovery | 128 |
| abstract_inverted_index.Molecular | 120 |
| abstract_inverted_index.Recently, | 28 |
| abstract_inverted_index.compounds | 60 |
| abstract_inverted_index.confirmed | 74 |
| abstract_inverted_index.dependent | 116 |
| abstract_inverted_index.dominated | 89 |
| abstract_inverted_index.generated | 109 |
| abstract_inverted_index.including | 93 |
| abstract_inverted_index.libraries | 12 |
| abstract_inverted_index.molecules | 18 |
| abstract_inverted_index.parallel, | 63 |
| abstract_inverted_index.potential | 2 |
| abstract_inverted_index.pyridinyl | 100, 107 |
| abstract_inverted_index.antibiotic | 20 |
| abstract_inverted_index.clustering | 82 |
| abstract_inverted_index.consisting | 56 |
| abstract_inverted_index.coordinate | 179 |
| abstract_inverted_index.frequently | 38 |
| abstract_inverted_index.industrial | 53 |
| abstract_inverted_index.inhibitors | 15 |
| abstract_inverted_index.ligand/ion | 118 |
| abstract_inverted_index.previously | 33 |
| abstract_inverted_index.thiazoline | 96 |
| abstract_inverted_index.validating | 183 |
| abstract_inverted_index.Ultimately, | 71 |
| abstract_inverted_index.albendazole | 170 |
| abstract_inverted_index.formamides, | 97 |
| abstract_inverted_index.open-source | 148 |
| abstract_inverted_index.FDA-approved | 161 |
| abstract_inverted_index.demonstrated | 31 |
| abstract_inverted_index.distributing | 139 |
| abstract_inverted_index.relationship | 103 |
| abstract_inverted_index.coordination. | 119 |
| abstract_inverted_index.thiadiazines, | 95 |
| abstract_inverted_index.antibacterials | 6 |
| abstract_inverted_index.applicability. | 186 |
| abstract_inverted_index.cheminformatic | 140 |
| abstract_inverted_index.classification | 123 |
| abstract_inverted_index.staphylococcal | 35 |
| abstract_inverted_index.thiabendazole, | 172 |
| abstract_inverted_index.anti-helminths, | 169 |
| abstract_inverted_index.Sphere-exclusion | 81 |
| abstract_inverted_index.copper-dependent | 14, 75, 164 |
| abstract_inverted_index.fingerprint-based | 121 |
| abstract_inverted_index.sulfur-containing | 91 |
| abstract_inverted_index.thieno-pyrimidines | 108 |
| abstract_inverted_index.anti-staphylococcal | 54 |
| abstract_inverted_index.copper-supplemented | 69 |
| abstract_inverted_index.thieno-pyrimidines. | 101 |
| abstract_inverted_index.Structure–activity | 102 |
| abstract_inverted_index.benzimidazole-2-thiones, | 94 |
| abstract_inverted_index.triazino-benzimidazoles, | 98 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.9452527 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |