High-Throughput Vector Similarity Search in Knowledge Graphs Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.01926
There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query corresponds to predicates over relational attributes associated with the underlying data vectors. For example, given past KG queries for a song entity, we want to construct new queries for new song entities whose vector representations are close to the vector representation of the entity in the past KG query. But entities in a KG also have non-vector attributes such as a song associated with an artist, a genre, and a release date. Therefore, suggested entities must also satisfy query predicates over non-vector attributes beyond a vector-based similarity predicate. While these tasks are central to KGs, our contributions are generally applicable to hybrid queries. In contrast to prior works that optimize online queries, we focus on enabling efficient batch processing of past hybrid query workloads. We present our system, HQI, for high-throughput batch processing of hybrid queries. We introduce a workload-aware vector data partitioning scheme to tailor the vector index layout to the given workload and describe a multi-query optimization technique to reduce the overhead of vector similarity computations. We evaluate our methods on industrial workloads and demonstrate that HQI yields a 31x improvement in throughput for finding related KG queries compared to existing hybrid query processing approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.01926
- https://arxiv.org/pdf/2304.01926
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4362656042
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4362656042Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.01926Digital Object Identifier
- Title
-
High-Throughput Vector Similarity Search in Knowledge GraphsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-04Full publication date if available
- Authors
-
Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F. Ilyas, Umar Farooq Minhas, Jeffrey Pound, Theodoros RekatsinasList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.01926Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.01926Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.01926Direct OA link when available
- Concepts
-
Computer science, Query expansion, Web query classification, Information retrieval, Nearest neighbor search, Similarity (geometry), Web search query, Construct (python library), Sargable, Vector space model, Query language, Focus (optics), Workload, Query optimization, Context (archaeology), Data mining, Artificial intelligence, Search engine, Image (mathematics), Paleontology, Operating system, Physics, Programming language, Optics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4362656042 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.01926 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.01926 |
| ids.openalex | https://openalex.org/W4362656042 |
| fwci | |
| type | preprint |
| title | High-Throughput Vector Similarity Search in Knowledge Graphs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T11478 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Caching and Content Delivery |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.762695848941803 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C99016210 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5743898749351501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5488129 |
| concepts[1].display_name | Query expansion |
| concepts[2].id | https://openalex.org/C118689300 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5573427677154541 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7978614 |
| concepts[2].display_name | Web query classification |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5500093102455139 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C116738811 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5351705551147461 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q608751 |
| concepts[4].display_name | Nearest neighbor search |
| concepts[5].id | https://openalex.org/C103278499 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5202432870864868 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[5].display_name | Similarity (geometry) |
| concepts[6].id | https://openalex.org/C164120249 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4944896697998047 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q995982 |
| concepts[6].display_name | Web search query |
| concepts[7].id | https://openalex.org/C2780801425 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4829903841018677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[7].display_name | Construct (python library) |
| concepts[8].id | https://openalex.org/C192939062 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4761086404323578 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q104840822 |
| concepts[8].display_name | Sargable |
| concepts[9].id | https://openalex.org/C89686163 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4650726318359375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1187982 |
| concepts[9].display_name | Vector space model |
| concepts[10].id | https://openalex.org/C192028432 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45723921060562134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q845739 |
| concepts[10].display_name | Query language |
| concepts[11].id | https://openalex.org/C192209626 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45640575885772705 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[11].display_name | Focus (optics) |
| concepts[12].id | https://openalex.org/C2778476105 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4508677124977112 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q628539 |
| concepts[12].display_name | Workload |
| concepts[13].id | https://openalex.org/C157692150 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42400434613227844 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2919848 |
| concepts[13].display_name | Query optimization |
| concepts[14].id | https://openalex.org/C2779343474 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4172241687774658 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[14].display_name | Context (archaeology) |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.37366175651550293 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.25368115305900574 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C97854310 |
| concepts[17].level | 2 |
| concepts[17].score | 0.23147252202033997 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q19541 |
| concepts[17].display_name | Search engine |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C199360897 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[22].display_name | Programming language |
| concepts[23].id | https://openalex.org/C120665830 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[23].display_name | Optics |
| concepts[24].id | https://openalex.org/C86803240 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[24].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.762695848941803 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/query-expansion |
| keywords[1].score | 0.5743898749351501 |
| keywords[1].display_name | Query expansion |
| keywords[2].id | https://openalex.org/keywords/web-query-classification |
| keywords[2].score | 0.5573427677154541 |
| keywords[2].display_name | Web query classification |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.5500093102455139 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/nearest-neighbor-search |
| keywords[4].score | 0.5351705551147461 |
| keywords[4].display_name | Nearest neighbor search |
| keywords[5].id | https://openalex.org/keywords/similarity |
| keywords[5].score | 0.5202432870864868 |
| keywords[5].display_name | Similarity (geometry) |
| keywords[6].id | https://openalex.org/keywords/web-search-query |
| keywords[6].score | 0.4944896697998047 |
| keywords[6].display_name | Web search query |
| keywords[7].id | https://openalex.org/keywords/construct |
| keywords[7].score | 0.4829903841018677 |
| keywords[7].display_name | Construct (python library) |
| keywords[8].id | https://openalex.org/keywords/sargable |
| keywords[8].score | 0.4761086404323578 |
| keywords[8].display_name | Sargable |
| keywords[9].id | https://openalex.org/keywords/vector-space-model |
| keywords[9].score | 0.4650726318359375 |
| keywords[9].display_name | Vector space model |
| keywords[10].id | https://openalex.org/keywords/query-language |
| keywords[10].score | 0.45723921060562134 |
| keywords[10].display_name | Query language |
| keywords[11].id | https://openalex.org/keywords/focus |
| keywords[11].score | 0.45640575885772705 |
| keywords[11].display_name | Focus (optics) |
| keywords[12].id | https://openalex.org/keywords/workload |
| keywords[12].score | 0.4508677124977112 |
| keywords[12].display_name | Workload |
| keywords[13].id | https://openalex.org/keywords/query-optimization |
| keywords[13].score | 0.42400434613227844 |
| keywords[13].display_name | Query optimization |
| keywords[14].id | https://openalex.org/keywords/context |
| keywords[14].score | 0.4172241687774658 |
| keywords[14].display_name | Context (archaeology) |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.37366175651550293 |
| keywords[15].display_name | Data mining |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.25368115305900574 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/search-engine |
| keywords[17].score | 0.23147252202033997 |
| keywords[17].display_name | Search engine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.01926 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.01926 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.01926 |
| locations[1].id | doi:10.48550/arxiv.2304.01926 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.01926 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5041665675 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5497-0481 |
| authorships[0].author.display_name | Jason Mohoney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohoney, Jason |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052360032 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4994-8014 |
| authorships[1].author.display_name | Anil Pacaci |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pacaci, Anil |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055538536 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6232-2027 |
| authorships[2].author.display_name | Shihabur Rahman Chowdhury |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chowdhury, Shihabur Rahman |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119011707 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4084-6102 |
| authorships[3].author.display_name | Ali Mousavi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mousavi, Ali |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5000141065 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9052-9714 |
| authorships[4].author.display_name | Ihab F. Ilyas |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ilyas, Ihab F. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032253873 |
| authorships[5].author.orcid | https://orcid.org/0009-0005-6520-3794 |
| authorships[5].author.display_name | Umar Farooq Minhas |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Minhas, Umar Farooq |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5060727577 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6281-6345 |
| authorships[6].author.display_name | Jeffrey Pound |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pound, Jeffrey |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5002060759 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6148-1854 |
| authorships[7].author.display_name | Theodoros Rekatsinas |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rekatsinas, Theodoros |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.01926 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High-Throughput Vector Similarity Search in Knowledge Graphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W2096359267, https://openalex.org/W2901901036, https://openalex.org/W2006459955, https://openalex.org/W2013069866, https://openalex.org/W2026738364, https://openalex.org/W1793997780, https://openalex.org/W2538384344, https://openalex.org/W2124814993, https://openalex.org/W2093300859, https://openalex.org/W2146885082 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.01926 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.01926 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.01926 |
| primary_location.id | pmh:oai:arXiv.org:2304.01926 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.01926 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.01926 |
| publication_date | 2023-04-04 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 113, 146, 154, 160, 163, 178, 232, 250, 274 |
| abstract_inverted_index.As | 21 |
| abstract_inverted_index.In | 37, 197 |
| abstract_inverted_index.KG | 59, 65, 110, 141, 147, 282 |
| abstract_inverted_index.We | 218, 230, 262 |
| abstract_inverted_index.an | 2, 158 |
| abstract_inverted_index.as | 153 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 45, 138, 145, 277 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 5, 48, 56, 81, 91, 135, 213, 227, 258 |
| abstract_inverted_index.on | 70, 208, 266 |
| abstract_inverted_index.to | 13, 85, 95, 118, 131, 187, 194, 199, 238, 244, 254, 285 |
| abstract_inverted_index.we | 40, 68, 116, 206 |
| abstract_inverted_index.31x | 275 |
| abstract_inverted_index.But | 143 |
| abstract_inverted_index.For | 106 |
| abstract_inverted_index.HQI | 272 |
| abstract_inverted_index.and | 17, 61, 89, 162, 248, 269 |
| abstract_inverted_index.are | 129, 185, 191 |
| abstract_inverted_index.for | 8, 63, 77, 112, 122, 223, 279 |
| abstract_inverted_index.new | 120, 123 |
| abstract_inverted_index.our | 189, 220, 264 |
| abstract_inverted_index.the | 46, 54, 82, 92, 102, 132, 136, 139, 240, 245, 256 |
| abstract_inverted_index.use | 19 |
| abstract_inverted_index.HQI, | 222 |
| abstract_inverted_index.KGs, | 188 |
| abstract_inverted_index.also | 148, 170 |
| abstract_inverted_index.data | 10, 25, 104, 235 |
| abstract_inverted_index.have | 149 |
| abstract_inverted_index.into | 11 |
| abstract_inverted_index.must | 169 |
| abstract_inverted_index.over | 97, 174 |
| abstract_inverted_index.part | 80, 90 |
| abstract_inverted_index.past | 64, 109, 140, 214 |
| abstract_inverted_index.song | 114, 124, 155 |
| abstract_inverted_index.such | 152 |
| abstract_inverted_index.that | 202, 271 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.want | 117 |
| abstract_inverted_index.with | 32, 101, 157 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.While | 182 |
| abstract_inverted_index.batch | 211, 225 |
| abstract_inverted_index.close | 130 |
| abstract_inverted_index.date. | 165 |
| abstract_inverted_index.focus | 69, 207 |
| abstract_inverted_index.given | 108, 246 |
| abstract_inverted_index.index | 242 |
| abstract_inverted_index.prior | 200 |
| abstract_inverted_index.query | 30, 66, 83, 93, 172, 216, 288 |
| abstract_inverted_index.serve | 14 |
| abstract_inverted_index.tasks | 55, 184 |
| abstract_inverted_index.these | 183 |
| abstract_inverted_index.where | 79 |
| abstract_inverted_index.whose | 126 |
| abstract_inverted_index.work, | 39 |
| abstract_inverted_index.works | 201 |
| abstract_inverted_index.(KGs). | 51 |
| abstract_inverted_index.Graphs | 50 |
| abstract_inverted_index.beyond | 177 |
| abstract_inverted_index.cases. | 20 |
| abstract_inverted_index.entity | 137 |
| abstract_inverted_index.genre, | 161 |
| abstract_inverted_index.hybrid | 71, 195, 215, 228, 287 |
| abstract_inverted_index.layout | 243 |
| abstract_inverted_index.online | 15, 33, 204 |
| abstract_inverted_index.query. | 142 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.reduce | 255 |
| abstract_inverted_index.scheme | 237 |
| abstract_inverted_index.search | 18, 44, 74, 88 |
| abstract_inverted_index.short) | 78 |
| abstract_inverted_index.tailor | 239 |
| abstract_inverted_index.vector | 34, 42, 72, 86, 127, 133, 234, 241, 259 |
| abstract_inverted_index.yields | 273 |
| abstract_inverted_index.(hybrid | 75 |
| abstract_inverted_index.artist, | 159 |
| abstract_inverted_index.central | 186 |
| abstract_inverted_index.context | 47 |
| abstract_inverted_index.entity, | 115 |
| abstract_inverted_index.explore | 41 |
| abstract_inverted_index.finding | 57, 280 |
| abstract_inverted_index.machine | 6 |
| abstract_inverted_index.methods | 265 |
| abstract_inverted_index.present | 219 |
| abstract_inverted_index.propose | 28 |
| abstract_inverted_index.queries | 60, 76, 111, 121, 283 |
| abstract_inverted_index.related | 58, 281 |
| abstract_inverted_index.release | 164 |
| abstract_inverted_index.result, | 23 |
| abstract_inverted_index.satisfy | 171 |
| abstract_inverted_index.search. | 36 |
| abstract_inverted_index.system, | 221 |
| abstract_inverted_index.systems | 27 |
| abstract_inverted_index.vectors | 12 |
| abstract_inverted_index.adoption | 4 |
| abstract_inverted_index.compared | 284 |
| abstract_inverted_index.contrast | 198 |
| abstract_inverted_index.describe | 249 |
| abstract_inverted_index.enabling | 209 |
| abstract_inverted_index.encoding | 9 |
| abstract_inverted_index.entities | 62, 125, 144, 168 |
| abstract_inverted_index.evaluate | 263 |
| abstract_inverted_index.example, | 107 |
| abstract_inverted_index.existing | 286 |
| abstract_inverted_index.learning | 7 |
| abstract_inverted_index.optimize | 203 |
| abstract_inverted_index.overhead | 257 |
| abstract_inverted_index.queries, | 205 |
| abstract_inverted_index.queries. | 196, 229 |
| abstract_inverted_index.vectors. | 105 |
| abstract_inverted_index.workload | 247 |
| abstract_inverted_index.Knowledge | 49 |
| abstract_inverted_index.Motivated | 52 |
| abstract_inverted_index.construct | 119 |
| abstract_inverted_index.efficient | 210 |
| abstract_inverted_index.generally | 192 |
| abstract_inverted_index.introduce | 231 |
| abstract_inverted_index.suggested | 167 |
| abstract_inverted_index.technique | 253 |
| abstract_inverted_index.workloads | 268 |
| abstract_inverted_index.Therefore, | 166 |
| abstract_inverted_index.applicable | 193 |
| abstract_inverted_index.associated | 100, 156 |
| abstract_inverted_index.attributes | 99, 151, 176 |
| abstract_inverted_index.augmenting | 29 |
| abstract_inverted_index.increasing | 3 |
| abstract_inverted_index.industrial | 267 |
| abstract_inverted_index.management | 26 |
| abstract_inverted_index.non-vector | 150, 175 |
| abstract_inverted_index.predicate. | 181 |
| abstract_inverted_index.predicates | 96, 173 |
| abstract_inverted_index.processing | 31, 212, 226, 289 |
| abstract_inverted_index.relational | 98 |
| abstract_inverted_index.similarity | 35, 43, 73, 87, 180, 260 |
| abstract_inverted_index.throughput | 278 |
| abstract_inverted_index.underlying | 103 |
| abstract_inverted_index.workloads, | 67 |
| abstract_inverted_index.workloads. | 217 |
| abstract_inverted_index.approaches. | 290 |
| abstract_inverted_index.corresponds | 84, 94 |
| abstract_inverted_index.demonstrate | 270 |
| abstract_inverted_index.improvement | 276 |
| abstract_inverted_index.multi-query | 251 |
| abstract_inverted_index.optimization | 252 |
| abstract_inverted_index.partitioning | 236 |
| abstract_inverted_index.vector-based | 179 |
| abstract_inverted_index.computations. | 261 |
| abstract_inverted_index.contributions | 190 |
| abstract_inverted_index.recommendation | 16 |
| abstract_inverted_index.representation | 134 |
| abstract_inverted_index.workload-aware | 233 |
| abstract_inverted_index.high-throughput | 224 |
| abstract_inverted_index.representations | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |