Highly Accurate Visual Method of Mars Terrain Classification for Rovers Based on Novel Image Features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32920/25365370.v1
It is important for Mars exploration rovers to achieve autonomous and safe mobility over rough terrain. Terrain classification can help rovers to select a safe terrain to traverse and avoid sinking and/or damaging the vehicle. Mars terrains are often classified using visual methods. However, the accuracy of terrain classification has been less than 90% in read operations. A high-accuracy vision-based method for Mars terrain classification is presented in this paper. By analyzing Mars terrain characteristics, novel image features, including multiscale gray gradient-grade features, multiscale edges strength-grade features, multiscale frequency-domain mean amplitude features, multiscale spectrum symmetry features, and multiscale spectrum amplitude-moment features, are proposed that are specifically targeted for terrain classification. Three classifiers, K-nearest neighbor (KNN), support vector machine (SVM), and random forests (RF), are adopted to classify the terrain using the proposed features. The Mars image dataset MSLNet that was collected by the Mars Science Laboratory (MSL, Curiosity) rover is used to conduct terrain classification experiments. The resolution of Mars images in the dataset is 256 × 256. Experimental results indicate that the RF classifies Mars terrain at the highest level of accuracy of 94.66%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32920/25365370.v1
- OA Status
- gold
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392544806
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392544806Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32920/25365370.v1Digital Object Identifier
- Title
-
Highly Accurate Visual Method of Mars Terrain Classification for Rovers Based on Novel Image FeaturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-07Full publication date if available
- Authors
-
Fengtian Lv, Chuankai Liu, Haibo Gao, Liang Ding, Zongquan Deng, Guang Jun LiuList of authors in order
- Landing page
-
https://doi.org/10.32920/25365370.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32920/25365370.v1Direct OA link when available
- Concepts
-
Mars Exploration Program, Terrain, Artificial intelligence, Computer science, Computer vision, Exploration of Mars, Image (mathematics), Remote sensing, Pattern recognition (psychology), Geology, Geography, Cartography, Astrobiology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392544806 |
|---|---|
| doi | https://doi.org/10.32920/25365370.v1 |
| ids.doi | https://doi.org/10.32920/25365370.v1 |
| ids.openalex | https://openalex.org/W4392544806 |
| fwci | |
| type | preprint |
| title | Highly Accurate Visual Method of Mars Terrain Classification for Rovers Based on Novel Image Features |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10406 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.6789000034332275 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Planetary Science and Exploration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C83260615 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8025647401809692 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6773121 |
| concepts[0].display_name | Mars Exploration Program |
| concepts[1].id | https://openalex.org/C161840515 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7469013929367065 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[1].display_name | Terrain |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.662999153137207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5763342380523682 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.556236207485199 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C68702407 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5454725027084351 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q716774 |
| concepts[5].display_name | Exploration of Mars |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4990835189819336 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4583721458911896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33601653575897217 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3208233714103699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2655686140060425 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C58640448 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2092016637325287 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[11].display_name | Cartography |
| concepts[12].id | https://openalex.org/C87355193 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20507287979125977 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q411 |
| concepts[12].display_name | Astrobiology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/mars-exploration-program |
| keywords[0].score | 0.8025647401809692 |
| keywords[0].display_name | Mars Exploration Program |
| keywords[1].id | https://openalex.org/keywords/terrain |
| keywords[1].score | 0.7469013929367065 |
| keywords[1].display_name | Terrain |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.662999153137207 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5763342380523682 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.556236207485199 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/exploration-of-mars |
| keywords[5].score | 0.5454725027084351 |
| keywords[5].display_name | Exploration of Mars |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.4990835189819336 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.4583721458911896 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.33601653575897217 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.3208233714103699 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.2655686140060425 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/cartography |
| keywords[11].score | 0.2092016637325287 |
| keywords[11].display_name | Cartography |
| keywords[12].id | https://openalex.org/keywords/astrobiology |
| keywords[12].score | 0.20507287979125977 |
| keywords[12].display_name | Astrobiology |
| language | en |
| locations[0].id | doi:10.32920/25365370.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32920/25365370.v1 |
| locations[1].id | pmh:oai:figshare.com:article/25365370 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/Highly_Accurate_Visual_Method_of_Mars_Terrain_Classification_for_Rovers_Based_on_Novel_Image_Features/25365370 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045950475 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3556-1575 |
| authorships[0].author.display_name | Fengtian Lv |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Marine Robotics, Shenyang 110169, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[0].affiliations[2].raw_affiliation_string | Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[0].affiliations[3].raw_affiliation_string | State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I204983213 |
| authorships[0].institutions[1].ror | https://ror.org/01yqg2h08 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I204983213 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Harbin Institute of Technology |
| authorships[0].institutions[2].id | https://openalex.org/I142078773 |
| authorships[0].institutions[2].ror | https://ror.org/00ft6nj33 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I142078773, https://openalex.org/I19820366 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Shenyang Institute of Automation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fengtian Lv |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China, Key Laboratory of Marine Robotics, Shenyang 110169, China, State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China, State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China |
| authorships[1].author.id | https://openalex.org/A5112684093 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4330-0524 |
| authorships[1].author.display_name | Chuankai Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210166468 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Aerospace Control Center Key Laboratory on the Technology of Space Flight Dynamics, Beijing 100190, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210166468 |
| authorships[1].institutions[0].ror | https://ror.org/007a14354 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210166468 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Aerospace Flight Control Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chuankai Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Aerospace Control Center Key Laboratory on the Technology of Space Flight Dynamics, Beijing 100190, China |
| authorships[2].author.id | https://openalex.org/A5033616367 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6501-656X |
| authorships[2].author.display_name | Haibo Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haibo Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[3].author.id | https://openalex.org/A5012020883 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8351-5178 |
| authorships[3].author.display_name | Liang Ding |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[3].institutions[0].id | https://openalex.org/I204983213 |
| authorships[3].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Harbin Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang Ding |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[4].author.id | https://openalex.org/A5100617483 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2432-8329 |
| authorships[4].author.display_name | Zongquan Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[4].institutions[0].id | https://openalex.org/I204983213 |
| authorships[4].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Harbin Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zongquan Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China |
| authorships[5].author.id | https://openalex.org/A5043665973 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Guang Jun Liu |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I530967 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Aerospace Engineering, Ryerson University, Toronto, ON M5B2K3, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I530967 |
| authorships[5].institutions[0].ror | https://ror.org/05g13zd79 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I530967 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Toronto Metropolitan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Guang Jun Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Aerospace Engineering, Ryerson University, Toronto, ON M5B2K3, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32920/25365370.v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Highly Accurate Visual Method of Mars Terrain Classification for Rovers Based on Novel Image Features |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10406 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.6789000034332275 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Planetary Science and Exploration |
| related_works | https://openalex.org/W750104118, https://openalex.org/W770322104, https://openalex.org/W2936464796, https://openalex.org/W2747269414, https://openalex.org/W1599335669, https://openalex.org/W4386866109, https://openalex.org/W4387423358, https://openalex.org/W799079913, https://openalex.org/W1863976565, https://openalex.org/W1569896267 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.32920/25365370.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32920/25365370.v1 |
| primary_location.id | doi:10.32920/25365370.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32920/25365370.v1 |
| publication_date | 2024-03-07 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2776289814, https://openalex.org/W4206785972, https://openalex.org/W1966385142, https://openalex.org/W2509415725, https://openalex.org/W2011961680, https://openalex.org/W132133602, https://openalex.org/W2086564205, https://openalex.org/W2395048810, https://openalex.org/W2140349677, https://openalex.org/W1567710201, https://openalex.org/W1966522809, https://openalex.org/W2055906658, https://openalex.org/W1987424218, https://openalex.org/W2765618743, https://openalex.org/W1599843069, https://openalex.org/W3005002749, https://openalex.org/W2114853995, https://openalex.org/W2782155040, https://openalex.org/W2161774613, https://openalex.org/W2319961868, https://openalex.org/W2136213179, https://openalex.org/W2604600453, https://openalex.org/W2032425258, https://openalex.org/W2739733934, https://openalex.org/W4200285110, https://openalex.org/W2085243991 |
| referenced_works_count | 26 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.a | 23 |
| abstract_inverted_index.By | 70 |
| abstract_inverted_index.RF | 173 |
| abstract_inverted_index.at | 177 |
| abstract_inverted_index.by | 141 |
| abstract_inverted_index.in | 54, 67, 161 |
| abstract_inverted_index.is | 1, 65, 149, 164 |
| abstract_inverted_index.of | 46, 158, 181, 183 |
| abstract_inverted_index.to | 7, 21, 26, 125, 151 |
| abstract_inverted_index.× | 166 |
| abstract_inverted_index.256 | 165 |
| abstract_inverted_index.90% | 53 |
| abstract_inverted_index.The | 133, 156 |
| abstract_inverted_index.and | 10, 28, 96, 119 |
| abstract_inverted_index.are | 37, 101, 104, 123 |
| abstract_inverted_index.can | 18 |
| abstract_inverted_index.for | 3, 61, 107 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.the | 33, 44, 127, 130, 142, 162, 172, 178 |
| abstract_inverted_index.was | 139 |
| abstract_inverted_index.256. | 167 |
| abstract_inverted_index.Mars | 4, 35, 62, 72, 134, 143, 159, 175 |
| abstract_inverted_index.been | 50 |
| abstract_inverted_index.gray | 80 |
| abstract_inverted_index.help | 19 |
| abstract_inverted_index.less | 51 |
| abstract_inverted_index.mean | 89 |
| abstract_inverted_index.over | 13 |
| abstract_inverted_index.read | 55 |
| abstract_inverted_index.safe | 11, 24 |
| abstract_inverted_index.than | 52 |
| abstract_inverted_index.that | 103, 138, 171 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.used | 150 |
| abstract_inverted_index.(MSL, | 146 |
| abstract_inverted_index.(RF), | 122 |
| abstract_inverted_index.Three | 110 |
| abstract_inverted_index.avoid | 29 |
| abstract_inverted_index.edges | 84 |
| abstract_inverted_index.image | 76, 135 |
| abstract_inverted_index.level | 180 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.rough | 14 |
| abstract_inverted_index.rover | 148 |
| abstract_inverted_index.using | 40, 129 |
| abstract_inverted_index.(KNN), | 114 |
| abstract_inverted_index.(SVM), | 118 |
| abstract_inverted_index.MSLNet | 137 |
| abstract_inverted_index.and/or | 31 |
| abstract_inverted_index.images | 160 |
| abstract_inverted_index.method | 60 |
| abstract_inverted_index.paper. | 69 |
| abstract_inverted_index.random | 120 |
| abstract_inverted_index.rovers | 6, 20 |
| abstract_inverted_index.select | 22 |
| abstract_inverted_index.vector | 116 |
| abstract_inverted_index.visual | 41 |
| abstract_inverted_index.Science | 144 |
| abstract_inverted_index.Terrain | 16 |
| abstract_inverted_index.achieve | 8 |
| abstract_inverted_index.adopted | 124 |
| abstract_inverted_index.conduct | 152 |
| abstract_inverted_index.dataset | 136, 163 |
| abstract_inverted_index.forests | 121 |
| abstract_inverted_index.highest | 179 |
| abstract_inverted_index.machine | 117 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.sinking | 30 |
| abstract_inverted_index.support | 115 |
| abstract_inverted_index.terrain | 25, 47, 63, 73, 108, 128, 153, 176 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.accuracy | 45, 182 |
| abstract_inverted_index.classify | 126 |
| abstract_inverted_index.damaging | 32 |
| abstract_inverted_index.indicate | 170 |
| abstract_inverted_index.methods. | 42 |
| abstract_inverted_index.mobility | 12 |
| abstract_inverted_index.neighbor | 113 |
| abstract_inverted_index.proposed | 102, 131 |
| abstract_inverted_index.spectrum | 93, 98 |
| abstract_inverted_index.symmetry | 94 |
| abstract_inverted_index.targeted | 106 |
| abstract_inverted_index.terrain. | 15 |
| abstract_inverted_index.terrains | 36 |
| abstract_inverted_index.traverse | 27 |
| abstract_inverted_index.vehicle. | 34 |
| abstract_inverted_index.K-nearest | 112 |
| abstract_inverted_index.amplitude | 90 |
| abstract_inverted_index.analyzing | 71 |
| abstract_inverted_index.collected | 140 |
| abstract_inverted_index.features, | 77, 82, 86, 91, 95, 100 |
| abstract_inverted_index.features. | 132 |
| abstract_inverted_index.important | 2 |
| abstract_inverted_index.including | 78 |
| abstract_inverted_index.presented | 66 |
| abstract_inverted_index.Curiosity) | 147 |
| abstract_inverted_index.Laboratory | 145 |
| abstract_inverted_index.autonomous | 9 |
| abstract_inverted_index.classified | 39 |
| abstract_inverted_index.classifies | 174 |
| abstract_inverted_index.multiscale | 79, 83, 87, 92, 97 |
| abstract_inverted_index.resolution | 157 |
| abstract_inverted_index.<p>It | 0 |
| abstract_inverted_index.exploration | 5 |
| abstract_inverted_index.operations. | 56 |
| abstract_inverted_index.Experimental | 168 |
| abstract_inverted_index.classifiers, | 111 |
| abstract_inverted_index.experiments. | 155 |
| abstract_inverted_index.specifically | 105 |
| abstract_inverted_index.vision-based | 59 |
| abstract_inverted_index.high-accuracy | 58 |
| abstract_inverted_index.classification | 17, 48, 64, 154 |
| abstract_inverted_index.gradient-grade | 81 |
| abstract_inverted_index.strength-grade | 85 |
| abstract_inverted_index.classification. | 109 |
| abstract_inverted_index.amplitude-moment | 99 |
| abstract_inverted_index.characteristics, | 74 |
| abstract_inverted_index.frequency-domain | 88 |
| abstract_inverted_index.94.66%.</p> | 184 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.02632303 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |