High‐performance hyperspectral remote sensing and machine learning algorithms for detection of blister blight in Camellia sinensis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/agj2.70060
Camellia sinensis is a widely cultivated crop that is harvested for two leaves and a bud. However, these soft tissues are highly susceptible to the infection known as Exobasidium vexans . This fungal disease reduces the quality and quantity of tea produced. The objective of the study was to develop a remote sensing‐based model that could be used to predict the severity of blister blight infections. The study was conducted on five tea varieties susceptible to blister blight infections and the hyperspectral data were collected from leaves with a handheld instrument. Spectral preprocessing algorithms that included Puchwein's and Honig's were applied to select calibration sets and perform feature selection, respectively. Four machine learning algorithms that included artificial neural network (ANN), random forest, k ‐nearest neighbors, and support vector machine were compared. The result indicated that the ANN outperformed other machine learning models, achieving a training accuracy of 83% (kappa coefficient = 0.78) and a testing accuracy of 92% (kappa coefficient = 0.90). The classification model was tested on another set of Kangra Asha tea leaves, resulting in a classification accuracy of 90% (kappa coefficient = 0.86). Thus, machine learning methods provided a novel technique to identify blister blight disease in the tea crop.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/agj2.70060
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060
- OA Status
- bronze
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409536279
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409536279Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/agj2.70060Digital Object Identifier
- Title
-
High‐performance hyperspectral remote sensing and machine learning algorithms for detection of blister blight in Camellia sinensisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Manisha Pathania, Kishor Chandra Kandpal, Meenakshi, Vivek Kumar Dhiman, Aparna Maitra Pati, Amit KumarList of authors in order
- Landing page
-
https://doi.org/10.1002/agj2.70060Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060Direct OA link when available
- Concepts
-
Hyperspectral imaging, Camellia sinensis, Blight, Algorithm, Agronomy, Remote sensing, Artificial intelligence, Computer science, Biology, Horticulture, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409536279 |
|---|---|
| doi | https://doi.org/10.1002/agj2.70060 |
| ids.doi | https://doi.org/10.1002/agj2.70060 |
| ids.openalex | https://openalex.org/W4409536279 |
| fwci | 0.0 |
| type | article |
| title | High‐performance hyperspectral remote sensing and machine learning algorithms for detection of blister blight in Camellia sinensis |
| biblio.issue | 2 |
| biblio.volume | 117 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11578 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9804999828338623 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Plant Pathogenic Bacteria Studies |
| topics[1].id | https://openalex.org/T11771 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9713000059127808 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Pathogens and Resistance |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9682000279426575 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7979191541671753 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C2992816389 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7948557734489441 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101815 |
| concepts[1].display_name | Camellia sinensis |
| concepts[2].id | https://openalex.org/C182076605 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5404729247093201 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4273292 |
| concepts[2].display_name | Blight |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5049372315406799 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C6557445 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37006109952926636 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[4].display_name | Agronomy |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35775619745254517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3401373028755188 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2909772992134094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27934810519218445 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C144027150 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24643662571907043 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[9].display_name | Horticulture |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11654198169708252 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.7979191541671753 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/camellia-sinensis |
| keywords[1].score | 0.7948557734489441 |
| keywords[1].display_name | Camellia sinensis |
| keywords[2].id | https://openalex.org/keywords/blight |
| keywords[2].score | 0.5404729247093201 |
| keywords[2].display_name | Blight |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5049372315406799 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/agronomy |
| keywords[4].score | 0.37006109952926636 |
| keywords[4].display_name | Agronomy |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.35775619745254517 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3401373028755188 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2909772992134094 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.27934810519218445 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/horticulture |
| keywords[9].score | 0.24643662571907043 |
| keywords[9].display_name | Horticulture |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.11654198169708252 |
| keywords[10].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1002/agj2.70060 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S139950591 |
| locations[0].source.issn | 0002-1962, 1072-9623, 1435-0645 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0002-1962 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Agronomy Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Agronomy Journal |
| locations[0].landing_page_url | https://doi.org/10.1002/agj2.70060 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100783987 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Manisha Pathania |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210128326 |
| authorships[0].affiliations[0].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I99364266 |
| authorships[0].affiliations[1].raw_affiliation_string | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India |
| authorships[0].institutions[0].id | https://openalex.org/I99364266 |
| authorships[0].institutions[0].ror | https://ror.org/053rcsq61 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99364266 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Academy of Scientific and Innovative Research |
| authorships[0].institutions[1].id | https://openalex.org/I4210128326 |
| authorships[0].institutions[1].ror | https://ror.org/03xcn0p72 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Institute of Himalayan Bioresource Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Manisha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India, Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[1].author.id | https://openalex.org/A5030742930 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0371-0895 |
| authorships[1].author.display_name | Kishor Chandra Kandpal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99364266 |
| authorships[1].affiliations[0].raw_affiliation_string | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210128326 |
| authorships[1].affiliations[1].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[1].institutions[0].id | https://openalex.org/I99364266 |
| authorships[1].institutions[0].ror | https://ror.org/053rcsq61 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99364266 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Academy of Scientific and Innovative Research |
| authorships[1].institutions[1].id | https://openalex.org/I4210128326 |
| authorships[1].institutions[1].ror | https://ror.org/03xcn0p72 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Institute of Himalayan Bioresource Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kishor Chandra Kandpal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India, Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[2].author.id | https://openalex.org/A5100607799 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Meenakshi |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210128326 |
| authorships[2].affiliations[0].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[2].institutions[0].id | https://openalex.org/I4210128326 |
| authorships[2].institutions[0].ror | https://ror.org/03xcn0p72 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Institute of Himalayan Bioresource Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Meenakshi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[3].author.id | https://openalex.org/A5016122839 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5711-7264 |
| authorships[3].author.display_name | Vivek Kumar Dhiman |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210128326 |
| authorships[3].affiliations[0].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I99364266 |
| authorships[3].affiliations[1].raw_affiliation_string | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India |
| authorships[3].institutions[0].id | https://openalex.org/I99364266 |
| authorships[3].institutions[0].ror | https://ror.org/053rcsq61 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99364266 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Academy of Scientific and Innovative Research |
| authorships[3].institutions[1].id | https://openalex.org/I4210128326 |
| authorships[3].institutions[1].ror | https://ror.org/03xcn0p72 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[3].institutions[1].country_code | IN |
| authorships[3].institutions[1].display_name | Institute of Himalayan Bioresource Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vivek Dhiman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India, Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[4].author.id | https://openalex.org/A5033913845 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Aparna Maitra Pati |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210128326 |
| authorships[4].affiliations[0].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[4].institutions[0].id | https://openalex.org/I4210128326 |
| authorships[4].institutions[0].ror | https://ror.org/03xcn0p72 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Institute of Himalayan Bioresource Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Aparna Maitra Pati |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[5].author.id | https://openalex.org/A5100709648 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5934-3575 |
| authorships[5].author.display_name | Amit Kumar |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I99364266 |
| authorships[5].affiliations[0].raw_affiliation_string | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210128326 |
| authorships[5].affiliations[1].raw_affiliation_string | Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| authorships[5].institutions[0].id | https://openalex.org/I99364266 |
| authorships[5].institutions[0].ror | https://ror.org/053rcsq61 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I99364266 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Academy of Scientific and Innovative Research |
| authorships[5].institutions[1].id | https://openalex.org/I4210128326 |
| authorships[5].institutions[1].ror | https://ror.org/03xcn0p72 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210128326, https://openalex.org/I4210134808, https://openalex.org/I66760702 |
| authorships[5].institutions[1].country_code | IN |
| authorships[5].institutions[1].display_name | Institute of Himalayan Bioresource Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Amit Kumar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India, Environmental Technology Division CSIR‐Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | High‐performance hyperspectral remote sensing and machine learning algorithms for detection of blister blight in Camellia sinensis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11578 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9804999828338623 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Plant Pathogenic Bacteria Studies |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2404757046, https://openalex.org/W2070598848, https://openalex.org/W2385371209, https://openalex.org/W4250051149, https://openalex.org/W2083270190 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/agj2.70060 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S139950591 |
| best_oa_location.source.issn | 0002-1962, 1072-9623, 1435-0645 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0002-1962 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Agronomy Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Agronomy Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1002/agj2.70060 |
| primary_location.id | doi:10.1002/agj2.70060 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S139950591 |
| primary_location.source.issn | 0002-1962, 1072-9623, 1435-0645 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0002-1962 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Agronomy Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/agj2.70060 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Agronomy Journal |
| primary_location.landing_page_url | https://doi.org/10.1002/agj2.70060 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2603461228, https://openalex.org/W2605010402, https://openalex.org/W2490548105, https://openalex.org/W2345533279, https://openalex.org/W3174232586, https://openalex.org/W2153977564, https://openalex.org/W2943018664, https://openalex.org/W2735448406, https://openalex.org/W4220972391, https://openalex.org/W2793166416, https://openalex.org/W2495348867, https://openalex.org/W220919437, https://openalex.org/W4292070928, https://openalex.org/W4361278790, https://openalex.org/W3131273225, https://openalex.org/W2285527858, https://openalex.org/W1831050183, https://openalex.org/W2090033093, https://openalex.org/W2990979467, https://openalex.org/W1872692906, https://openalex.org/W4226177094, https://openalex.org/W1980237824, https://openalex.org/W2789107426, https://openalex.org/W2796189661, https://openalex.org/W2321344857, https://openalex.org/W3093991637, https://openalex.org/W2984432074, https://openalex.org/W2069198983, https://openalex.org/W3005383134, https://openalex.org/W4210563188, https://openalex.org/W2776796661, https://openalex.org/W4213011021, https://openalex.org/W3087953628, https://openalex.org/W3204011935, https://openalex.org/W2923176871, https://openalex.org/W4207021741, https://openalex.org/W2702736887, https://openalex.org/W1995479068, https://openalex.org/W2145956036, https://openalex.org/W4285207472, https://openalex.org/W3137947626, https://openalex.org/W2596223166, https://openalex.org/W4238452663, https://openalex.org/W1971554606 |
| referenced_works_count | 44 |
| abstract_inverted_index.. | 31 |
| abstract_inverted_index.= | 151, 161, 185 |
| abstract_inverted_index.a | 4, 15, 51, 89, 144, 154, 178, 192 |
| abstract_inverted_index.k | 123 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.be | 57 |
| abstract_inverted_index.in | 177, 200 |
| abstract_inverted_index.is | 3, 9 |
| abstract_inverted_index.of | 40, 45, 63, 147, 157, 171, 181 |
| abstract_inverted_index.on | 71, 168 |
| abstract_inverted_index.to | 24, 49, 59, 76, 102, 195 |
| abstract_inverted_index.83% | 148 |
| abstract_inverted_index.90% | 182 |
| abstract_inverted_index.92% | 158 |
| abstract_inverted_index.ANN | 137 |
| abstract_inverted_index.The | 43, 67, 132, 163 |
| abstract_inverted_index.and | 14, 38, 80, 98, 106, 126, 153 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.set | 170 |
| abstract_inverted_index.tea | 41, 73, 174, 202 |
| abstract_inverted_index.the | 25, 36, 46, 61, 81, 136, 201 |
| abstract_inverted_index.two | 12 |
| abstract_inverted_index.was | 48, 69, 166 |
| abstract_inverted_index.Asha | 173 |
| abstract_inverted_index.Four | 111 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.bud. | 16 |
| abstract_inverted_index.crop | 7 |
| abstract_inverted_index.data | 83 |
| abstract_inverted_index.five | 72 |
| abstract_inverted_index.from | 86 |
| abstract_inverted_index.sets | 105 |
| abstract_inverted_index.soft | 19 |
| abstract_inverted_index.that | 8, 55, 95, 115, 135 |
| abstract_inverted_index.used | 58 |
| abstract_inverted_index.were | 84, 100, 130 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.0.78) | 152 |
| abstract_inverted_index.Thus, | 187 |
| abstract_inverted_index.could | 56 |
| abstract_inverted_index.crop. | 203 |
| abstract_inverted_index.known | 27 |
| abstract_inverted_index.model | 54, 165 |
| abstract_inverted_index.novel | 193 |
| abstract_inverted_index.other | 139 |
| abstract_inverted_index.study | 47, 68 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.(ANN), | 120 |
| abstract_inverted_index.(kappa | 149, 159, 183 |
| abstract_inverted_index.0.86). | 186 |
| abstract_inverted_index.0.90). | 162 |
| abstract_inverted_index.Kangra | 172 |
| abstract_inverted_index.blight | 65, 78, 198 |
| abstract_inverted_index.fungal | 33 |
| abstract_inverted_index.highly | 22 |
| abstract_inverted_index.leaves | 13, 87 |
| abstract_inverted_index.neural | 118 |
| abstract_inverted_index.random | 121 |
| abstract_inverted_index.remote | 52 |
| abstract_inverted_index.result | 133 |
| abstract_inverted_index.select | 103 |
| abstract_inverted_index.tested | 167 |
| abstract_inverted_index.vector | 128 |
| abstract_inverted_index.vexans | 30 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.Honig's | 99 |
| abstract_inverted_index.another | 169 |
| abstract_inverted_index.applied | 101 |
| abstract_inverted_index.blister | 64, 77, 197 |
| abstract_inverted_index.develop | 50 |
| abstract_inverted_index.disease | 34, 199 |
| abstract_inverted_index.feature | 108 |
| abstract_inverted_index.forest, | 122 |
| abstract_inverted_index.leaves, | 175 |
| abstract_inverted_index.machine | 112, 129, 140, 188 |
| abstract_inverted_index.methods | 190 |
| abstract_inverted_index.models, | 142 |
| abstract_inverted_index.network | 119 |
| abstract_inverted_index.perform | 107 |
| abstract_inverted_index.predict | 60 |
| abstract_inverted_index.quality | 37 |
| abstract_inverted_index.reduces | 35 |
| abstract_inverted_index.support | 127 |
| abstract_inverted_index.testing | 155 |
| abstract_inverted_index.tissues | 20 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Camellia | 1 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Spectral | 92 |
| abstract_inverted_index.accuracy | 146, 156, 180 |
| abstract_inverted_index.handheld | 90 |
| abstract_inverted_index.identify | 196 |
| abstract_inverted_index.included | 96, 116 |
| abstract_inverted_index.learning | 113, 141, 189 |
| abstract_inverted_index.provided | 191 |
| abstract_inverted_index.quantity | 39 |
| abstract_inverted_index.severity | 62 |
| abstract_inverted_index.sinensis | 2 |
| abstract_inverted_index.training | 145 |
| abstract_inverted_index.achieving | 143 |
| abstract_inverted_index.collected | 85 |
| abstract_inverted_index.compared. | 131 |
| abstract_inverted_index.conducted | 70 |
| abstract_inverted_index.harvested | 10 |
| abstract_inverted_index.indicated | 134 |
| abstract_inverted_index.infection | 26 |
| abstract_inverted_index.objective | 44 |
| abstract_inverted_index.produced. | 42 |
| abstract_inverted_index.resulting | 176 |
| abstract_inverted_index.technique | 194 |
| abstract_inverted_index.varieties | 74 |
| abstract_inverted_index.Puchwein's | 97 |
| abstract_inverted_index.algorithms | 94, 114 |
| abstract_inverted_index.artificial | 117 |
| abstract_inverted_index.cultivated | 6 |
| abstract_inverted_index.infections | 79 |
| abstract_inverted_index.neighbors, | 125 |
| abstract_inverted_index.selection, | 109 |
| abstract_inverted_index.‐nearest | 124 |
| abstract_inverted_index.Exobasidium | 29 |
| abstract_inverted_index.calibration | 104 |
| abstract_inverted_index.coefficient | 150, 160, 184 |
| abstract_inverted_index.infections. | 66 |
| abstract_inverted_index.instrument. | 91 |
| abstract_inverted_index.susceptible | 23, 75 |
| abstract_inverted_index.outperformed | 138 |
| abstract_inverted_index.hyperspectral | 82 |
| abstract_inverted_index.preprocessing | 93 |
| abstract_inverted_index.respectively. | 110 |
| abstract_inverted_index.classification | 164, 179 |
| abstract_inverted_index.sensing‐based | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.08738732 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |