HiGP: A high-performance Python package for Gaussian Process Article Swipe
Gaussian Processes (GPs) are flexible, nonparametric Bayesian models widely used for regression and classification tasks due to their ability to capture complex data patterns and provide uncertainty quantification (UQ). Traditional GP implementations often face challenges in scalability and computational efficiency, especially with large datasets. To address these challenges, HiGP, a high-performance Python package, is designed for efficient Gaussian Process regression (GPR) and classification (GPC) across datasets of varying sizes. HiGP combines multiple new iterative methods to enhance the performance and efficiency of GP computations. It implements various effective matrix-vector (MatVec) and matrix-matrix (MatMul) multiplication strategies specifically tailored for kernel matrices. To improve the convergence of iterative methods, HiGP also integrates the recently developed Adaptive Factorized Nystrom (AFN) preconditioner and employs precise formulas for computing the gradients. With a user-friendly Python interface, HiGP seamlessly integrates with PyTorch and other Python packages, allowing easy incorporation into existing machine learning and data analysis workflows.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.02259
- https://arxiv.org/pdf/2503.02259
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415334673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415334673Canonical identifier for this work in OpenAlex
- Title
-
HiGP: A high-performance Python package for Gaussian ProcessWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Huang Hua, Tianshi Xu, Yuanzhe Xi, Edmond ChowList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.02259Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.02259Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.02259Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415334673 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4415334673 |
| fwci | 0.0 |
| type | article |
| title | HiGP: A high-performance Python package for Gaussian Process |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8989999890327454 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.02259 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.02259 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.02259 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5033411062 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Huang Hua |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Hua |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5015784249 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3119-1957 |
| authorships[1].author.display_name | Tianshi Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Tianshi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056635728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[2].author.display_name | Yuanzhe Xi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xi, Yuanzhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039834058 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0474-3752 |
| authorships[3].author.display_name | Edmond Chow |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chow, Edmond |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.02259 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | HiGP: A high-performance Python package for Gaussian Process |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8989999890327454 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.02259 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.02259 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.02259 |
| primary_location.id | pmh:oai:arXiv.org:2503.02259 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.02259 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.02259 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 127 |
| abstract_inverted_index.GP | 30, 82 |
| abstract_inverted_index.It | 84 |
| abstract_inverted_index.To | 44, 100 |
| abstract_inverted_index.in | 35 |
| abstract_inverted_index.is | 53 |
| abstract_inverted_index.of | 66, 81, 104 |
| abstract_inverted_index.to | 16, 19, 75 |
| abstract_inverted_index.and | 12, 24, 37, 61, 79, 90, 118, 136, 147 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 10, 55, 97, 122 |
| abstract_inverted_index.new | 72 |
| abstract_inverted_index.the | 77, 102, 110, 124 |
| abstract_inverted_index.HiGP | 69, 107, 131 |
| abstract_inverted_index.With | 126 |
| abstract_inverted_index.also | 108 |
| abstract_inverted_index.data | 22, 148 |
| abstract_inverted_index.easy | 141 |
| abstract_inverted_index.face | 33 |
| abstract_inverted_index.into | 143 |
| abstract_inverted_index.used | 9 |
| abstract_inverted_index.with | 41, 134 |
| abstract_inverted_index.(AFN) | 116 |
| abstract_inverted_index.(GPC) | 63 |
| abstract_inverted_index.(GPR) | 60 |
| abstract_inverted_index.(GPs) | 2 |
| abstract_inverted_index.(UQ). | 28 |
| abstract_inverted_index.HiGP, | 48 |
| abstract_inverted_index.large | 42 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.other | 137 |
| abstract_inverted_index.tasks | 14 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.Python | 51, 129, 138 |
| abstract_inverted_index.across | 64 |
| abstract_inverted_index.kernel | 98 |
| abstract_inverted_index.models | 7 |
| abstract_inverted_index.sizes. | 68 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.Nystrom | 115 |
| abstract_inverted_index.Process | 58 |
| abstract_inverted_index.PyTorch | 135 |
| abstract_inverted_index.ability | 18 |
| abstract_inverted_index.address | 45 |
| abstract_inverted_index.capture | 20 |
| abstract_inverted_index.complex | 21 |
| abstract_inverted_index.employs | 119 |
| abstract_inverted_index.enhance | 76 |
| abstract_inverted_index.improve | 101 |
| abstract_inverted_index.machine | 145 |
| abstract_inverted_index.methods | 74 |
| abstract_inverted_index.precise | 120 |
| abstract_inverted_index.provide | 25 |
| abstract_inverted_index.various | 86 |
| abstract_inverted_index.varying | 67 |
| abstract_inverted_index.(MatMul) | 92 |
| abstract_inverted_index.(MatVec) | 89 |
| abstract_inverted_index.Adaptive | 113 |
| abstract_inverted_index.Bayesian | 6 |
| abstract_inverted_index.Gaussian | 0, 57 |
| abstract_inverted_index.allowing | 140 |
| abstract_inverted_index.analysis | 149 |
| abstract_inverted_index.combines | 70 |
| abstract_inverted_index.datasets | 65 |
| abstract_inverted_index.designed | 54 |
| abstract_inverted_index.existing | 144 |
| abstract_inverted_index.formulas | 121 |
| abstract_inverted_index.learning | 146 |
| abstract_inverted_index.methods, | 106 |
| abstract_inverted_index.multiple | 71 |
| abstract_inverted_index.package, | 52 |
| abstract_inverted_index.patterns | 23 |
| abstract_inverted_index.recently | 111 |
| abstract_inverted_index.tailored | 96 |
| abstract_inverted_index.Processes | 1 |
| abstract_inverted_index.computing | 123 |
| abstract_inverted_index.datasets. | 43 |
| abstract_inverted_index.developed | 112 |
| abstract_inverted_index.effective | 87 |
| abstract_inverted_index.efficient | 56 |
| abstract_inverted_index.flexible, | 4 |
| abstract_inverted_index.iterative | 73, 105 |
| abstract_inverted_index.matrices. | 99 |
| abstract_inverted_index.packages, | 139 |
| abstract_inverted_index.Factorized | 114 |
| abstract_inverted_index.challenges | 34 |
| abstract_inverted_index.efficiency | 80 |
| abstract_inverted_index.especially | 40 |
| abstract_inverted_index.gradients. | 125 |
| abstract_inverted_index.implements | 85 |
| abstract_inverted_index.integrates | 109, 133 |
| abstract_inverted_index.interface, | 130 |
| abstract_inverted_index.regression | 11, 59 |
| abstract_inverted_index.seamlessly | 132 |
| abstract_inverted_index.strategies | 94 |
| abstract_inverted_index.workflows. | 150 |
| abstract_inverted_index.Traditional | 29 |
| abstract_inverted_index.challenges, | 47 |
| abstract_inverted_index.convergence | 103 |
| abstract_inverted_index.efficiency, | 39 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.scalability | 36 |
| abstract_inverted_index.uncertainty | 26 |
| abstract_inverted_index.specifically | 95 |
| abstract_inverted_index.computational | 38 |
| abstract_inverted_index.computations. | 83 |
| abstract_inverted_index.incorporation | 142 |
| abstract_inverted_index.matrix-matrix | 91 |
| abstract_inverted_index.matrix-vector | 88 |
| abstract_inverted_index.nonparametric | 5 |
| abstract_inverted_index.user-friendly | 128 |
| abstract_inverted_index.classification | 13, 62 |
| abstract_inverted_index.multiplication | 93 |
| abstract_inverted_index.preconditioner | 117 |
| abstract_inverted_index.quantification | 27 |
| abstract_inverted_index.implementations | 31 |
| abstract_inverted_index.high-performance | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.22641995 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |