Histokt: Cross Knowledge Transfer in Computational Pathology Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icassp43922.2022.9747400
The lack of well-annotated datasets in computational pathology (CPath) obstructs the application of deep learning techniques for classifying medical images. Many CPath workflows involve transferring learned knowledge between various image domains through transfer learning. Currently, most transfer learning research follows a model-centric approach, tuning network parameters to improve transfer results over few datasets. In this paper, we take a data-centric approach to the transfer learning problem and examine the existence of generalizable knowledge between histopathological datasets. First, we create a standardization workflow for aggregating existing histopathological data. We then measure inter-domain knowledge by training ResNet18 models across multiple histopathological datasets, and cross-transferring between them to determine the quantity and quality of innate shared knowledge. Additionally, we use weight distillation to share knowledge between models without additional training. We find that hard to learn, multi-class datasets benefit most from pretraining, and a two stage learning framework incorporating a large source domain such as ImageNet allows for better utilization of smaller datasets. Furthermore, we find that weight distillation enables models trained on purely histopathological features to outperform models using external natural image data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp43922.2022.9747400
- OA Status
- green
- Cited By
- 9
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221150821
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221150821Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp43922.2022.9747400Digital Object Identifier
- Title
-
Histokt: Cross Knowledge Transfer in Computational PathologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-27Full publication date if available
- Authors
-
Ryan Zhang, Jiadai Zhu, Stephen C. Yang, Mahdi S. Hosseini, Angelo Genovese, Lina Chen, Corwyn Rowsell, Savvas Damaskinos, Sonal Varma, Konstantinos N. PlataniotisList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp43922.2022.9747400Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/2434/929747Direct OA link when available
- Concepts
-
Computer science, Transfer of learning, Workflow, Artificial intelligence, Domain (mathematical analysis), Standardization, Machine learning, Knowledge transfer, Deep learning, Domain knowledge, Data mining, Database, Knowledge management, Operating system, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 5, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221150821 |
|---|---|
| doi | https://doi.org/10.1109/icassp43922.2022.9747400 |
| ids.doi | https://doi.org/10.1109/icassp43922.2022.9747400 |
| ids.openalex | https://openalex.org/W4221150821 |
| fwci | 1.05799536 |
| type | article |
| title | Histokt: Cross Knowledge Transfer in Computational Pathology |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1280 |
| biblio.first_page | 1276 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T10552 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9814000129699707 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Screening and Detection |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9811000227928162 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8224101066589355 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C150899416 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8211259245872498 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[1].display_name | Transfer of learning |
| concepts[2].id | https://openalex.org/C177212765 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8057223558425903 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[2].display_name | Workflow |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6233291625976562 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C36503486 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6071098446846008 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[4].display_name | Domain (mathematical analysis) |
| concepts[5].id | https://openalex.org/C188087704 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5880861282348633 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q369577 |
| concepts[5].display_name | Standardization |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5822048187255859 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2776960227 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5630912780761719 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2586354 |
| concepts[7].display_name | Knowledge transfer |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5459191203117371 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C207685749 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5393580794334412 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[9].display_name | Domain knowledge |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3533676266670227 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C77088390 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1255800426006317 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[11].display_name | Database |
| concepts[12].id | https://openalex.org/C56739046 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08326858282089233 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[12].display_name | Knowledge management |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8224101066589355 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[1].score | 0.8211259245872498 |
| keywords[1].display_name | Transfer of learning |
| keywords[2].id | https://openalex.org/keywords/workflow |
| keywords[2].score | 0.8057223558425903 |
| keywords[2].display_name | Workflow |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6233291625976562 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/domain |
| keywords[4].score | 0.6071098446846008 |
| keywords[4].display_name | Domain (mathematical analysis) |
| keywords[5].id | https://openalex.org/keywords/standardization |
| keywords[5].score | 0.5880861282348633 |
| keywords[5].display_name | Standardization |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5822048187255859 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/knowledge-transfer |
| keywords[7].score | 0.5630912780761719 |
| keywords[7].display_name | Knowledge transfer |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.5459191203117371 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/domain-knowledge |
| keywords[9].score | 0.5393580794334412 |
| keywords[9].display_name | Domain knowledge |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3533676266670227 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/database |
| keywords[11].score | 0.1255800426006317 |
| keywords[11].display_name | Database |
| keywords[12].id | https://openalex.org/keywords/knowledge-management |
| keywords[12].score | 0.08326858282089233 |
| keywords[12].display_name | Knowledge management |
| language | en |
| locations[0].id | doi:10.1109/icassp43922.2022.9747400 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607702 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp43922.2022.9747400 |
| locations[1].id | pmh:oai:air.unimi.it:2434/929747 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400516 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Archivio Istituzionale della Ricerca (Universita Degli Studi Di Milano) |
| locations[1].source.host_organization | https://openalex.org/I189158943 |
| locations[1].source.host_organization_name | University of Milan |
| locations[1].source.host_organization_lineage | https://openalex.org/I189158943 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/bookPart |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/2434/929747 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5054393648 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ryan Zhang |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Toronto, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I185261750 |
| authorships[0].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ryan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Toronto, Canada |
| authorships[1].author.id | https://openalex.org/A5006111126 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiadai Zhu |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Toronto, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I185261750 |
| authorships[1].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Toronto |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiadai Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Toronto, Canada |
| authorships[2].author.id | https://openalex.org/A5019578689 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2188-3407 |
| authorships[2].author.display_name | Stephen C. Yang |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Toronto, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I185261750 |
| authorships[2].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Toronto |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stephen Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Toronto, Canada |
| authorships[3].author.id | https://openalex.org/A5073426758 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9147-0731 |
| authorships[3].author.display_name | Mahdi S. Hosseini |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I106938459 |
| authorships[3].affiliations[0].raw_affiliation_string | University of New Brunswick, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I106938459 |
| authorships[3].institutions[0].ror | https://ror.org/05nkf0n29 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I106938459 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of New Brunswick |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mahdi S. Hosseini |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of New Brunswick, Canada |
| authorships[4].author.id | https://openalex.org/A5031772222 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3683-4723 |
| authorships[4].author.display_name | Angelo Genovese |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I189158943 |
| authorships[4].affiliations[0].raw_affiliation_string | Università degli Studi di Milano,Italy |
| authorships[4].institutions[0].id | https://openalex.org/I189158943 |
| authorships[4].institutions[0].ror | https://ror.org/00wjc7c48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I189158943 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Milan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Angelo Genovese |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Università degli Studi di Milano,Italy |
| authorships[5].author.id | https://openalex.org/A5100607403 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4427-3719 |
| authorships[5].author.display_name | Lina Chen |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1323843004, https://openalex.org/I2802362269 |
| authorships[5].affiliations[0].raw_affiliation_string | Sunnybrook Health Sciences Centre, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I2802362269 |
| authorships[5].institutions[0].ror | https://ror.org/05pr37258 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I110535807, https://openalex.org/I2802362269 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Health Sciences Centre |
| authorships[5].institutions[1].id | https://openalex.org/I1323843004 |
| authorships[5].institutions[1].ror | https://ror.org/03wefcv03 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I1323843004 |
| authorships[5].institutions[1].country_code | CA |
| authorships[5].institutions[1].display_name | Sunnybrook Health Science Centre |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lina Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Sunnybrook Health Sciences Centre, Canada |
| authorships[6].author.id | https://openalex.org/A5020972039 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0604-638X |
| authorships[6].author.display_name | Corwyn Rowsell |
| authorships[6].countries | CA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1297363086 |
| authorships[6].affiliations[0].raw_affiliation_string | St. Michaels Hospital, Canada |
| authorships[6].institutions[0].id | https://openalex.org/I1297363086 |
| authorships[6].institutions[0].ror | https://ror.org/04skqfp25 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1297363086, https://openalex.org/I4399598460 |
| authorships[6].institutions[0].country_code | CA |
| authorships[6].institutions[0].display_name | St. Michael's Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Corwyn Rowsell |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | St. Michaels Hospital, Canada |
| authorships[7].author.id | https://openalex.org/A5069005016 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6030-1823 |
| authorships[7].author.display_name | Savvas Damaskinos |
| authorships[7].countries | CA |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210100025 |
| authorships[7].affiliations[0].raw_affiliation_string | Huron Digital Pathology, Canada |
| authorships[7].institutions[0].id | https://openalex.org/I4210100025 |
| authorships[7].institutions[0].ror | https://ror.org/019xzfh39 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210100025 |
| authorships[7].institutions[0].country_code | CA |
| authorships[7].institutions[0].display_name | Huron Technologies (Canada) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Savvas Damaskinos |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Huron Digital Pathology, Canada |
| authorships[8].author.id | https://openalex.org/A5104110645 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Sonal Varma |
| authorships[8].countries | CA |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210156381 |
| authorships[8].affiliations[0].raw_affiliation_string | Kingston Health Sciences Center, Canada |
| authorships[8].institutions[0].id | https://openalex.org/I4210156381 |
| authorships[8].institutions[0].ror | https://ror.org/05bwaty49 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210156381 |
| authorships[8].institutions[0].country_code | CA |
| authorships[8].institutions[0].display_name | Kingston Health Sciences Centre |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sonal Varma |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Kingston Health Sciences Center, Canada |
| authorships[9].author.id | https://openalex.org/A5059152392 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3647-5473 |
| authorships[9].author.display_name | Konstantinos N. Plataniotis |
| authorships[9].countries | CA |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[9].affiliations[0].raw_affiliation_string | University of Toronto, Canada |
| authorships[9].institutions[0].id | https://openalex.org/I185261750 |
| authorships[9].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[9].institutions[0].country_code | CA |
| authorships[9].institutions[0].display_name | University of Toronto |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Konstantinos N. Plataniotis |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University of Toronto, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/2434/929747 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Histokt: Cross Knowledge Transfer in Computational Pathology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2378767206, https://openalex.org/W1540871478, https://openalex.org/W328308450, https://openalex.org/W282641168, https://openalex.org/W2376963063, https://openalex.org/W2066396794, https://openalex.org/W2366734808, https://openalex.org/W2002476357, https://openalex.org/W2391444248, https://openalex.org/W2390716080 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:air.unimi.it:2434/929747 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400516 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Archivio Istituzionale della Ricerca (Universita Degli Studi Di Milano) |
| best_oa_location.source.host_organization | https://openalex.org/I189158943 |
| best_oa_location.source.host_organization_name | University of Milan |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I189158943 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/bookPart |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/2434/929747 |
| primary_location.id | doi:10.1109/icassp43922.2022.9747400 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607702 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp43922.2022.9747400 |
| publication_date | 2022-04-27 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2948885921, https://openalex.org/W3173898803, https://openalex.org/W2885824038, https://openalex.org/W2504150216, https://openalex.org/W2806857275, https://openalex.org/W2914568698, https://openalex.org/W2288892845, https://openalex.org/W2083927153, https://openalex.org/W2922239620, https://openalex.org/W2194775991, https://openalex.org/W3121943121, https://openalex.org/W2964358045, https://openalex.org/W2978636994, https://openalex.org/W2969278648, https://openalex.org/W3092224781, https://openalex.org/W3021631844, https://openalex.org/W2592929672, https://openalex.org/W2947825023, https://openalex.org/W3112995972, https://openalex.org/W6779620101, https://openalex.org/W6784291726, https://openalex.org/W6604254268, https://openalex.org/W2616247523, https://openalex.org/W104184427, https://openalex.org/W3092043977, https://openalex.org/W3035359320, https://openalex.org/W3102564565, https://openalex.org/W2187089797 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 40, 58, 79, 140, 146 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.We | 87, 127 |
| abstract_inverted_index.as | 151 |
| abstract_inverted_index.by | 92 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.of | 2, 12, 70, 110, 157 |
| abstract_inverted_index.on | 169 |
| abstract_inverted_index.to | 46, 61, 104, 119, 131, 173 |
| abstract_inverted_index.we | 56, 77, 115, 161 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 66, 100, 108, 139 |
| abstract_inverted_index.few | 51 |
| abstract_inverted_index.for | 16, 82, 154 |
| abstract_inverted_index.the | 10, 62, 68, 106 |
| abstract_inverted_index.two | 141 |
| abstract_inverted_index.use | 116 |
| abstract_inverted_index.Many | 20 |
| abstract_inverted_index.deep | 13 |
| abstract_inverted_index.find | 128, 162 |
| abstract_inverted_index.from | 137 |
| abstract_inverted_index.hard | 130 |
| abstract_inverted_index.lack | 1 |
| abstract_inverted_index.most | 35, 136 |
| abstract_inverted_index.over | 50 |
| abstract_inverted_index.such | 150 |
| abstract_inverted_index.take | 57 |
| abstract_inverted_index.that | 129, 163 |
| abstract_inverted_index.them | 103 |
| abstract_inverted_index.then | 88 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.CPath | 21 |
| abstract_inverted_index.data. | 86, 180 |
| abstract_inverted_index.image | 29, 179 |
| abstract_inverted_index.large | 147 |
| abstract_inverted_index.share | 120 |
| abstract_inverted_index.stage | 142 |
| abstract_inverted_index.using | 176 |
| abstract_inverted_index.First, | 76 |
| abstract_inverted_index.across | 96 |
| abstract_inverted_index.allows | 153 |
| abstract_inverted_index.better | 155 |
| abstract_inverted_index.create | 78 |
| abstract_inverted_index.domain | 149 |
| abstract_inverted_index.innate | 111 |
| abstract_inverted_index.learn, | 132 |
| abstract_inverted_index.models | 95, 123, 167, 175 |
| abstract_inverted_index.paper, | 55 |
| abstract_inverted_index.purely | 170 |
| abstract_inverted_index.shared | 112 |
| abstract_inverted_index.source | 148 |
| abstract_inverted_index.tuning | 43 |
| abstract_inverted_index.weight | 117, 164 |
| abstract_inverted_index.(CPath) | 8 |
| abstract_inverted_index.benefit | 135 |
| abstract_inverted_index.between | 27, 73, 102, 122 |
| abstract_inverted_index.domains | 30 |
| abstract_inverted_index.enables | 166 |
| abstract_inverted_index.examine | 67 |
| abstract_inverted_index.follows | 39 |
| abstract_inverted_index.images. | 19 |
| abstract_inverted_index.improve | 47 |
| abstract_inverted_index.involve | 23 |
| abstract_inverted_index.learned | 25 |
| abstract_inverted_index.measure | 89 |
| abstract_inverted_index.medical | 18 |
| abstract_inverted_index.natural | 178 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.problem | 65 |
| abstract_inverted_index.quality | 109 |
| abstract_inverted_index.results | 49 |
| abstract_inverted_index.smaller | 158 |
| abstract_inverted_index.through | 31 |
| abstract_inverted_index.trained | 168 |
| abstract_inverted_index.various | 28 |
| abstract_inverted_index.without | 124 |
| abstract_inverted_index.ImageNet | 152 |
| abstract_inverted_index.ResNet18 | 94 |
| abstract_inverted_index.approach | 60 |
| abstract_inverted_index.datasets | 4, 134 |
| abstract_inverted_index.existing | 84 |
| abstract_inverted_index.external | 177 |
| abstract_inverted_index.features | 172 |
| abstract_inverted_index.learning | 14, 37, 64, 143 |
| abstract_inverted_index.multiple | 97 |
| abstract_inverted_index.quantity | 107 |
| abstract_inverted_index.research | 38 |
| abstract_inverted_index.training | 93 |
| abstract_inverted_index.transfer | 32, 36, 48, 63 |
| abstract_inverted_index.workflow | 81 |
| abstract_inverted_index.approach, | 42 |
| abstract_inverted_index.datasets, | 99 |
| abstract_inverted_index.datasets. | 52, 75, 159 |
| abstract_inverted_index.determine | 105 |
| abstract_inverted_index.existence | 69 |
| abstract_inverted_index.framework | 144 |
| abstract_inverted_index.knowledge | 26, 72, 91, 121 |
| abstract_inverted_index.learning. | 33 |
| abstract_inverted_index.obstructs | 9 |
| abstract_inverted_index.pathology | 7 |
| abstract_inverted_index.training. | 126 |
| abstract_inverted_index.workflows | 22 |
| abstract_inverted_index.Currently, | 34 |
| abstract_inverted_index.additional | 125 |
| abstract_inverted_index.knowledge. | 113 |
| abstract_inverted_index.outperform | 174 |
| abstract_inverted_index.parameters | 45 |
| abstract_inverted_index.techniques | 15 |
| abstract_inverted_index.aggregating | 83 |
| abstract_inverted_index.application | 11 |
| abstract_inverted_index.classifying | 17 |
| abstract_inverted_index.multi-class | 133 |
| abstract_inverted_index.utilization | 156 |
| abstract_inverted_index.Furthermore, | 160 |
| abstract_inverted_index.data-centric | 59 |
| abstract_inverted_index.distillation | 118, 165 |
| abstract_inverted_index.inter-domain | 90 |
| abstract_inverted_index.pretraining, | 138 |
| abstract_inverted_index.transferring | 24 |
| abstract_inverted_index.Additionally, | 114 |
| abstract_inverted_index.computational | 6 |
| abstract_inverted_index.generalizable | 71 |
| abstract_inverted_index.incorporating | 145 |
| abstract_inverted_index.model-centric | 41 |
| abstract_inverted_index.well-annotated | 3 |
| abstract_inverted_index.standardization | 80 |
| abstract_inverted_index.histopathological | 74, 85, 98, 171 |
| abstract_inverted_index.cross-transferring | 101 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.76204592 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |