Histological Image Classification Between Follicular Lymphoma and Reactive Lymphoid Tissue Using Deep Learning and Explainable Artificial Intelligence (XAI) Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/cancers17152428
Background/Objectives: The major question that confronts a pathologist when evaluating a lymph node biopsy is whether the process is benign or malignant, and the differential diagnosis between follicular lymphoma and reactive lymphoid tissue can be challenging. Methods: This study designed a convolutional neural network based on ResNet architecture to classify a large series of 221 cases, including 177 follicular lymphoma and 44 reactive lymphoid tissue/lymphoid hyperplasia, which were stained with hematoxylin and eosin (H&E). Explainable artificial intelligence (XAI) methods were used for interpretability. Results: The series included 1,004,509 follicular lymphoma and 490,506 reactive lymphoid tissue image-patches at 224 × 244 × 3, and was partitioned into training (70%), validation (10%), and testing (20%) sets. The performance of the training (training and validation sets) had an accuracy of 99.81%. In the testing set, the performance metrics achieved an accuracy of 99.80% at the image-patch level for follicular lymphoma. The other performance parameters were precision (99.8%), recall (99.8%), false positive rate (0.35%), specificity (99.7%), and F1 score (99.9%). Interpretability was analyzed using three methods: grad-CAM, image LIME, and occlusion sensitivity. Additionally, hybrid partitioning was performed to avoid information leakage using a patient-level independent validation set that confirmed high classification performance. Conclusions: Narrow artificial intelligence (AI) can perform differential diagnosis between follicular lymphoma and reactive lymphoma tissue, but it is task-specific and operates within limited constraints. The trained ResNet convolutional neural network (CNN) may be used as transfer learning for larger series of cases and lymphoma diagnoses in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/cancers17152428
- https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959
- OA Status
- gold
- Cited By
- 1
- References
- 74
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412570113
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412570113Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/cancers17152428Digital Object Identifier
- Title
-
Histological Image Classification Between Follicular Lymphoma and Reactive Lymphoid Tissue Using Deep Learning and Explainable Artificial Intelligence (XAI)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-22Full publication date if available
- Authors
-
Joaquim Carreras, Haruka Ikoma, Yara Yukie Kikuti, Shunsuke Nagase, Atsushi Ito, Makoto Orita, Sakura Tomita, Y. Tanigaki, Naoya Nakamura, Yohei MasugiList of authors in order
- Landing page
-
https://doi.org/10.3390/cancers17152428Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959Direct OA link when available
- Concepts
-
Follicular lymphoma, Convolutional neural network, Lymphoma, BCL6, Artificial intelligence, Lymphoid hyperplasia, Computer science, Pathology, Medicine, Pattern recognition (psychology), Germinal center, Immunology, B cell, AntibodyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
74Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412570113 |
|---|---|
| doi | https://doi.org/10.3390/cancers17152428 |
| ids.doi | https://doi.org/10.3390/cancers17152428 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40805131 |
| ids.openalex | https://openalex.org/W4412570113 |
| fwci | 6.62138127 |
| type | article |
| title | Histological Image Classification Between Follicular Lymphoma and Reactive Lymphoid Tissue Using Deep Learning and Explainable Artificial Intelligence (XAI) |
| awards[0].id | https://openalex.org/G1949575989 |
| awards[0].funder_id | https://openalex.org/F4320320912 |
| awards[0].display_name | |
| awards[0].funder_award_id | KAKEN 23K06454 |
| awards[0].funder_display_name | Ministry of Education, Culture, Sports, Science and Technology |
| biblio.issue | 15 |
| biblio.volume | 17 |
| biblio.last_page | 2428 |
| biblio.first_page | 2428 |
| topics[0].id | https://openalex.org/T13314 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9817000031471252 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Lymphadenopathy Diagnosis and Analysis |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9401000142097473 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11713 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9375 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Genital Health and Disease |
| funders[0].id | https://openalex.org/F4320320912 |
| funders[0].ror | https://ror.org/048rj2z13 |
| funders[0].display_name | Ministry of Education, Culture, Sports, Science and Technology |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2777058707 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7587828636169434 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q123251 |
| concepts[0].display_name | Follicular lymphoma |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6026726365089417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C2779338263 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5605695843696594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208414 |
| concepts[2].display_name | Lymphoma |
| concepts[3].id | https://openalex.org/C2777537477 |
| concepts[3].level | 5 |
| concepts[3].score | 0.557365357875824 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17847411 |
| concepts[3].display_name | BCL6 |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5261430740356445 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2780117679 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4940846264362335 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17131724 |
| concepts[5].display_name | Lymphoid hyperplasia |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45749789476394653 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C142724271 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4558185636997223 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[7].display_name | Pathology |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3683571219444275 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.33507370948791504 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C96926380 |
| concepts[10].level | 4 |
| concepts[10].score | 0.17700448632240295 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1737968 |
| concepts[10].display_name | Germinal center |
| concepts[11].id | https://openalex.org/C203014093 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1248500645160675 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[11].display_name | Immunology |
| concepts[12].id | https://openalex.org/C2778453870 |
| concepts[12].level | 3 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188930 |
| concepts[12].display_name | B cell |
| concepts[13].id | https://openalex.org/C159654299 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q79460 |
| concepts[13].display_name | Antibody |
| keywords[0].id | https://openalex.org/keywords/follicular-lymphoma |
| keywords[0].score | 0.7587828636169434 |
| keywords[0].display_name | Follicular lymphoma |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6026726365089417 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/lymphoma |
| keywords[2].score | 0.5605695843696594 |
| keywords[2].display_name | Lymphoma |
| keywords[3].id | https://openalex.org/keywords/bcl6 |
| keywords[3].score | 0.557365357875824 |
| keywords[3].display_name | BCL6 |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5261430740356445 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/lymphoid-hyperplasia |
| keywords[5].score | 0.4940846264362335 |
| keywords[5].display_name | Lymphoid hyperplasia |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.45749789476394653 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pathology |
| keywords[7].score | 0.4558185636997223 |
| keywords[7].display_name | Pathology |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.3683571219444275 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.33507370948791504 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/germinal-center |
| keywords[10].score | 0.17700448632240295 |
| keywords[10].display_name | Germinal center |
| keywords[11].id | https://openalex.org/keywords/immunology |
| keywords[11].score | 0.1248500645160675 |
| keywords[11].display_name | Immunology |
| language | en |
| locations[0].id | doi:10.3390/cancers17152428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S168415115 |
| locations[0].source.issn | 2072-6694 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-6694 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Cancers |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cancers |
| locations[0].landing_page_url | https://doi.org/10.3390/cancers17152428 |
| locations[1].id | pmid:40805131 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cancers |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40805131 |
| locations[2].id | pmh:oai:europepmc.org:11155331 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12345699 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5084180858 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6129-8299 |
| authorships[0].author.display_name | Joaquim Carreras |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[0].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Tokai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joaquim Carreras |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[1].author.id | https://openalex.org/A5069692032 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0650-7609 |
| authorships[1].author.display_name | Haruka Ikoma |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[1].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Tokai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haruka Ikoma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[2].author.id | https://openalex.org/A5043642745 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7013-3093 |
| authorships[2].author.display_name | Yara Yukie Kikuti |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[2].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Tokai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yara Yukie Kikuti |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[3].author.id | https://openalex.org/A5030203878 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6130-3879 |
| authorships[3].author.display_name | Shunsuke Nagase |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[3].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Tokai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shunsuke Nagase |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[4].author.id | https://openalex.org/A5041538504 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3482-2742 |
| authorships[4].author.display_name | Atsushi Ito |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[4].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Tokai University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Atsushi Ito |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[5].author.id | https://openalex.org/A5072356906 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Makoto Orita |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[5].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Tokai University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Makoto Orita |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[6].author.id | https://openalex.org/A5040539086 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3358-5845 |
| authorships[6].author.display_name | Sakura Tomita |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[6].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Tokai University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sakura Tomita |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[7].author.id | https://openalex.org/A5061700522 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Y. Tanigaki |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[7].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Tokai University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yuki Tanigaki |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[8].author.id | https://openalex.org/A5037516043 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Naoya Nakamura |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[8].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Tokai University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Naoya Nakamura |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[9].author.id | https://openalex.org/A5056642819 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6952-4043 |
| authorships[9].author.display_name | Yohei Masugi |
| authorships[9].countries | JP |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1314466530 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| authorships[9].institutions[0].id | https://openalex.org/I1314466530 |
| authorships[9].institutions[0].ror | https://ror.org/01p7qe739 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I1314466530 |
| authorships[9].institutions[0].country_code | JP |
| authorships[9].institutions[0].display_name | Tokai University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Yohei Masugi |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Histological Image Classification Between Follicular Lymphoma and Reactive Lymphoid Tissue Using Deep Learning and Explainable Artificial Intelligence (XAI) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13314 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9817000031471252 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Lymphadenopathy Diagnosis and Analysis |
| related_works | https://openalex.org/W2139294331, https://openalex.org/W2263945982, https://openalex.org/W2803775493, https://openalex.org/W2063335010, https://openalex.org/W2359380520, https://openalex.org/W2751433983, https://openalex.org/W2147384423, https://openalex.org/W2045348028, https://openalex.org/W1978882049, https://openalex.org/W1844082354 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/cancers17152428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S168415115 |
| best_oa_location.source.issn | 2072-6694 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-6694 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Cancers |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cancers |
| best_oa_location.landing_page_url | https://doi.org/10.3390/cancers17152428 |
| primary_location.id | doi:10.3390/cancers17152428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S168415115 |
| primary_location.source.issn | 2072-6694 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-6694 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Cancers |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-6694/17/15/2428/pdf?version=1753194959 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cancers |
| primary_location.landing_page_url | https://doi.org/10.3390/cancers17152428 |
| publication_date | 2025-07-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1976345159, https://openalex.org/W4406382305, https://openalex.org/W4313320831, https://openalex.org/W4394695440, https://openalex.org/W4411069454, https://openalex.org/W4281625438, https://openalex.org/W4211233489, https://openalex.org/W4400724528, https://openalex.org/W4396626528, https://openalex.org/W1605230984, https://openalex.org/W4283381496, https://openalex.org/W4280646765, https://openalex.org/W4206917721, https://openalex.org/W4387603362, https://openalex.org/W4411562726, https://openalex.org/W4382795969, https://openalex.org/W4220756987, https://openalex.org/W4254498451, https://openalex.org/W4404908318, https://openalex.org/W2194775991, https://openalex.org/W4409588006, https://openalex.org/W4401637628, https://openalex.org/W4404063174, https://openalex.org/W4403003860, https://openalex.org/W4400336337, https://openalex.org/W4410970602, https://openalex.org/W4405005152, https://openalex.org/W4211229712, https://openalex.org/W6755831695, https://openalex.org/W4409981970, https://openalex.org/W3109772564, https://openalex.org/W4401010030, https://openalex.org/W4408738147, https://openalex.org/W4402220065, https://openalex.org/W4399327424, https://openalex.org/W4401426484, https://openalex.org/W4292295173, https://openalex.org/W4407890777, https://openalex.org/W4410090159, https://openalex.org/W4405098395, https://openalex.org/W832971097, https://openalex.org/W2516809705, https://openalex.org/W4409495041, https://openalex.org/W2962858109, https://openalex.org/W4399764573, https://openalex.org/W4379979741, https://openalex.org/W4309247130, https://openalex.org/W3176696297, https://openalex.org/W4406136982, https://openalex.org/W4399188058, https://openalex.org/W3032044812, https://openalex.org/W4391383911, https://openalex.org/W4399428524, https://openalex.org/W4395114419, https://openalex.org/W3161749397, https://openalex.org/W3108615578, https://openalex.org/W3200046533, https://openalex.org/W4307818390, https://openalex.org/W3116674843, https://openalex.org/W4292731360, https://openalex.org/W2342299174, https://openalex.org/W4206460361, https://openalex.org/W2530293644, https://openalex.org/W4407942740, https://openalex.org/W4408397944, https://openalex.org/W4406377777, https://openalex.org/W4406955152, https://openalex.org/W4405131047, https://openalex.org/W4403417562, https://openalex.org/W4281643269, https://openalex.org/W4385297815, https://openalex.org/W2964046761, https://openalex.org/W4408008246, https://openalex.org/W4249594181 |
| referenced_works_count | 74 |
| abstract_inverted_index.a | 6, 10, 40, 50, 188 |
| abstract_inverted_index.3, | 101 |
| abstract_inverted_index.44 | 61 |
| abstract_inverted_index.F1 | 163 |
| abstract_inverted_index.In | 128 |
| abstract_inverted_index.an | 124, 136 |
| abstract_inverted_index.as | 233 |
| abstract_inverted_index.at | 96, 140 |
| abstract_inverted_index.be | 34, 231 |
| abstract_inverted_index.in | 244 |
| abstract_inverted_index.is | 14, 18, 216 |
| abstract_inverted_index.it | 215 |
| abstract_inverted_index.of | 53, 116, 126, 138, 239 |
| abstract_inverted_index.on | 45 |
| abstract_inverted_index.or | 20 |
| abstract_inverted_index.to | 48, 183 |
| abstract_inverted_index.× | 98, 100 |
| abstract_inverted_index.177 | 57 |
| abstract_inverted_index.221 | 54 |
| abstract_inverted_index.224 | 97 |
| abstract_inverted_index.244 | 99 |
| abstract_inverted_index.The | 1, 84, 114, 147, 223 |
| abstract_inverted_index.and | 22, 29, 60, 71, 90, 102, 110, 120, 162, 175, 210, 218, 241 |
| abstract_inverted_index.but | 214 |
| abstract_inverted_index.can | 33, 203 |
| abstract_inverted_index.for | 81, 144, 236 |
| abstract_inverted_index.had | 123 |
| abstract_inverted_index.may | 230 |
| abstract_inverted_index.set | 192 |
| abstract_inverted_index.the | 16, 23, 117, 129, 132, 141, 245 |
| abstract_inverted_index.was | 103, 167, 181 |
| abstract_inverted_index.(AI) | 202 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.high | 195 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.node | 12 |
| abstract_inverted_index.rate | 158 |
| abstract_inverted_index.set, | 131 |
| abstract_inverted_index.that | 4, 193 |
| abstract_inverted_index.used | 80, 232 |
| abstract_inverted_index.were | 67, 79, 151 |
| abstract_inverted_index.when | 8 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.(20%) | 112 |
| abstract_inverted_index.(CNN) | 229 |
| abstract_inverted_index.(XAI) | 77 |
| abstract_inverted_index.LIME, | 174 |
| abstract_inverted_index.avoid | 184 |
| abstract_inverted_index.based | 44 |
| abstract_inverted_index.cases | 240 |
| abstract_inverted_index.eosin | 72 |
| abstract_inverted_index.false | 156 |
| abstract_inverted_index.image | 173 |
| abstract_inverted_index.large | 51 |
| abstract_inverted_index.level | 143 |
| abstract_inverted_index.lymph | 11 |
| abstract_inverted_index.major | 2 |
| abstract_inverted_index.other | 148 |
| abstract_inverted_index.score | 164 |
| abstract_inverted_index.sets) | 122 |
| abstract_inverted_index.sets. | 113 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.three | 170 |
| abstract_inverted_index.using | 169, 187 |
| abstract_inverted_index.which | 66 |
| abstract_inverted_index.(10%), | 109 |
| abstract_inverted_index.(70%), | 107 |
| abstract_inverted_index.99.80% | 139 |
| abstract_inverted_index.Narrow | 199 |
| abstract_inverted_index.ResNet | 46, 225 |
| abstract_inverted_index.benign | 19 |
| abstract_inverted_index.biopsy | 13 |
| abstract_inverted_index.cases, | 55 |
| abstract_inverted_index.hybrid | 179 |
| abstract_inverted_index.larger | 237 |
| abstract_inverted_index.neural | 42, 227 |
| abstract_inverted_index.recall | 154 |
| abstract_inverted_index.series | 52, 85, 238 |
| abstract_inverted_index.tissue | 32, 94 |
| abstract_inverted_index.within | 220 |
| abstract_inverted_index.490,506 | 91 |
| abstract_inverted_index.99.81%. | 127 |
| abstract_inverted_index.between | 26, 207 |
| abstract_inverted_index.future. | 246 |
| abstract_inverted_index.leakage | 186 |
| abstract_inverted_index.limited | 221 |
| abstract_inverted_index.methods | 78 |
| abstract_inverted_index.metrics | 134 |
| abstract_inverted_index.network | 43, 228 |
| abstract_inverted_index.perform | 204 |
| abstract_inverted_index.process | 17 |
| abstract_inverted_index.stained | 68 |
| abstract_inverted_index.testing | 111, 130 |
| abstract_inverted_index.tissue, | 213 |
| abstract_inverted_index.trained | 224 |
| abstract_inverted_index.whether | 15 |
| abstract_inverted_index.(0.35%), | 159 |
| abstract_inverted_index.(99.7%), | 161 |
| abstract_inverted_index.(99.8%), | 153, 155 |
| abstract_inverted_index.(99.9%). | 165 |
| abstract_inverted_index.Methods: | 36 |
| abstract_inverted_index.Results: | 83 |
| abstract_inverted_index.accuracy | 125, 137 |
| abstract_inverted_index.achieved | 135 |
| abstract_inverted_index.analyzed | 168 |
| abstract_inverted_index.classify | 49 |
| abstract_inverted_index.designed | 39 |
| abstract_inverted_index.included | 86 |
| abstract_inverted_index.learning | 235 |
| abstract_inverted_index.lymphoid | 31, 63, 93 |
| abstract_inverted_index.lymphoma | 28, 59, 89, 209, 212, 242 |
| abstract_inverted_index.methods: | 171 |
| abstract_inverted_index.operates | 219 |
| abstract_inverted_index.positive | 157 |
| abstract_inverted_index.question | 3 |
| abstract_inverted_index.reactive | 30, 62, 92, 211 |
| abstract_inverted_index.training | 106, 118 |
| abstract_inverted_index.transfer | 234 |
| abstract_inverted_index.(training | 119 |
| abstract_inverted_index.1,004,509 | 87 |
| abstract_inverted_index.confirmed | 194 |
| abstract_inverted_index.confronts | 5 |
| abstract_inverted_index.diagnoses | 243 |
| abstract_inverted_index.diagnosis | 25, 206 |
| abstract_inverted_index.grad-CAM, | 172 |
| abstract_inverted_index.including | 56 |
| abstract_inverted_index.lymphoma. | 146 |
| abstract_inverted_index.occlusion | 176 |
| abstract_inverted_index.performed | 182 |
| abstract_inverted_index.precision | 152 |
| abstract_inverted_index.(H&E). | 73 |
| abstract_inverted_index.artificial | 75, 200 |
| abstract_inverted_index.evaluating | 9 |
| abstract_inverted_index.follicular | 27, 58, 88, 145, 208 |
| abstract_inverted_index.malignant, | 21 |
| abstract_inverted_index.parameters | 150 |
| abstract_inverted_index.validation | 108, 121, 191 |
| abstract_inverted_index.Explainable | 74 |
| abstract_inverted_index.hematoxylin | 70 |
| abstract_inverted_index.image-patch | 142 |
| abstract_inverted_index.independent | 190 |
| abstract_inverted_index.information | 185 |
| abstract_inverted_index.partitioned | 104 |
| abstract_inverted_index.pathologist | 7 |
| abstract_inverted_index.performance | 115, 133, 149 |
| abstract_inverted_index.specificity | 160 |
| abstract_inverted_index.Conclusions: | 198 |
| abstract_inverted_index.architecture | 47 |
| abstract_inverted_index.challenging. | 35 |
| abstract_inverted_index.constraints. | 222 |
| abstract_inverted_index.differential | 24, 205 |
| abstract_inverted_index.hyperplasia, | 65 |
| abstract_inverted_index.intelligence | 76, 201 |
| abstract_inverted_index.partitioning | 180 |
| abstract_inverted_index.performance. | 197 |
| abstract_inverted_index.sensitivity. | 177 |
| abstract_inverted_index.Additionally, | 178 |
| abstract_inverted_index.convolutional | 41, 226 |
| abstract_inverted_index.image-patches | 95 |
| abstract_inverted_index.patient-level | 189 |
| abstract_inverted_index.task-specific | 217 |
| abstract_inverted_index.classification | 196 |
| abstract_inverted_index.tissue/lymphoid | 64 |
| abstract_inverted_index.Interpretability | 166 |
| abstract_inverted_index.interpretability. | 82 |
| abstract_inverted_index.Background/Objectives: | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5084180858 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I1314466530 |
| citation_normalized_percentile.value | 0.92288989 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |