HistoSpeckle-Net: Mutual Information-Guided Deep Learning for high-fidelity reconstruction of complex OrganAMNIST images via perturbed Multimode Fibers Article Swipe
Existing deep learning methods in multimode fiber (MMF) imaging often focus on simpler datasets, limiting their applicability to complex, real-world imaging tasks. These models are typically data-intensive, a challenge that becomes more pronounced when dealing with diverse and complex images. In this work, we propose HistoSpeckle-Net, a deep learning architecture designed to reconstruct structurally rich medical images from MMF speckles. To build a clinically relevant dataset, we develop an optical setup that couples laser light through a spatial light modulator (SLM) into an MMF, capturing output speckle patterns corresponding to input OrganAMNIST images. Unlike previous MMF imaging approaches, which have not considered the underlying statistics of speckles and reconstructed images, we introduce a distribution-aware learning strategy. We employ a histogram-based mutual information loss to enhance model robustness and reduce reliance on large datasets. Our model includes a histogram computation unit that estimates smooth marginal and joint histograms for calculating mutual information loss. It also incorporates a unique Three-Scale Feature Refinement Module, which leads to multiscale Structural Similarity Index Measure (SSIM) loss computation. Together, these two loss functions enhance both the structural fidelity and statistical alignment of the reconstructed images. Our experiments on the complex OrganAMNIST dataset demonstrate that HistoSpeckle-Net achieves higher fidelity than baseline models such as U-Net and Pix2Pix. It gives superior performance even with limited training samples and across varying fiber bending conditions. By effectively reconstructing complex anatomical features with reduced data and under fiber perturbations, HistoSpeckle-Net brings MMF imaging closer to practical deployment in real-world clinical environments.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.20245
- https://arxiv.org/pdf/2511.20245
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106862066
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106862066Canonical identifier for this work in OpenAlex
- Title
-
HistoSpeckle-Net: Mutual Information-Guided Deep Learning for high-fidelity reconstruction of complex OrganAMNIST images via perturbed Multimode FibersWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-25Full publication date if available
- Authors
-
Maqbool, Jawaria, Cheema, M. ImranList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.20245Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.20245Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.20245Direct OA link when available
- Concepts
-
Computer science, Deep learning, Artificial intelligence, Robustness (evolution), Speckle pattern, Histogram, Fidelity, Multi-mode optical fiber, Computer vision, Iterative reconstruction, Pattern recognition (psychology), Mutual information, Focus (optics), High fidelity, Feature (linguistics), Speckle noise, Computation, Feature learning, Algorithm, Metric (unit), Artificial neural network, Data modeling, Optical flow, Similarity measure, Wasserstein metric, Similarity (geometry), Segmentation, Medical imagingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106862066 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7106862066 |
| fwci | 0.0 |
| type | article |
| title | HistoSpeckle-Net: Mutual Information-Guided Deep Learning for high-fidelity reconstruction of complex OrganAMNIST images via perturbed Multimode Fibers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11996 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.6284276247024536 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3102 |
| topics[0].subfield.display_name | Acoustics and Ultrasonics |
| topics[0].display_name | Random lasers and scattering media |
| topics[1].id | https://openalex.org/T11569 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.09016893059015274 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Optical Coherence Tomography Applications |
| topics[2].id | https://openalex.org/T10977 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.07962360233068466 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Optical Imaging and Spectroscopy Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7076078653335571 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7037084698677063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7012085914611816 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5450149178504944 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C102290492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5369412899017334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7575045 |
| concepts[4].display_name | Speckle pattern |
| concepts[5].id | https://openalex.org/C53533937 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4835992157459259 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[5].display_name | Histogram |
| concepts[6].id | https://openalex.org/C2776459999 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45919254422187805 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[6].display_name | Fidelity |
| concepts[7].id | https://openalex.org/C101645829 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4477072060108185 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1781857 |
| concepts[7].display_name | Multi-mode optical fiber |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43631863594055176 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C141379421 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4354919493198395 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[9].display_name | Iterative reconstruction |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42479372024536133 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C152139883 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4247139096260071 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q252973 |
| concepts[11].display_name | Mutual information |
| concepts[12].id | https://openalex.org/C192209626 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41231492161750793 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[12].display_name | Focus (optics) |
| concepts[13].id | https://openalex.org/C113364801 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3837132155895233 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[13].display_name | High fidelity |
| concepts[14].id | https://openalex.org/C2776401178 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3724764585494995 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[14].display_name | Feature (linguistics) |
| concepts[15].id | https://openalex.org/C180940675 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3332340717315674 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7575045 |
| concepts[15].display_name | Speckle noise |
| concepts[16].id | https://openalex.org/C45374587 |
| concepts[16].level | 2 |
| concepts[16].score | 0.30984601378440857 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[16].display_name | Computation |
| concepts[17].id | https://openalex.org/C59404180 |
| concepts[17].level | 2 |
| concepts[17].score | 0.30657532811164856 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[17].display_name | Feature learning |
| concepts[18].id | https://openalex.org/C11413529 |
| concepts[18].level | 1 |
| concepts[18].score | 0.3022453486919403 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[18].display_name | Algorithm |
| concepts[19].id | https://openalex.org/C176217482 |
| concepts[19].level | 2 |
| concepts[19].score | 0.29410797357559204 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[19].display_name | Metric (unit) |
| concepts[20].id | https://openalex.org/C50644808 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2866506278514862 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[20].display_name | Artificial neural network |
| concepts[21].id | https://openalex.org/C67186912 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2782217860221863 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[21].display_name | Data modeling |
| concepts[22].id | https://openalex.org/C155542232 |
| concepts[22].level | 3 |
| concepts[22].score | 0.27422502636909485 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[22].display_name | Optical flow |
| concepts[23].id | https://openalex.org/C2776517306 |
| concepts[23].level | 2 |
| concepts[23].score | 0.27361398935317993 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q29017317 |
| concepts[23].display_name | Similarity measure |
| concepts[24].id | https://openalex.org/C2777634741 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2687644362449646 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q768993 |
| concepts[24].display_name | Wasserstein metric |
| concepts[25].id | https://openalex.org/C103278499 |
| concepts[25].level | 3 |
| concepts[25].score | 0.26547619700431824 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[25].display_name | Similarity (geometry) |
| concepts[26].id | https://openalex.org/C89600930 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2641192078590393 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[26].display_name | Segmentation |
| concepts[27].id | https://openalex.org/C31601959 |
| concepts[27].level | 2 |
| concepts[27].score | 0.25733286142349243 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[27].display_name | Medical imaging |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7037084698677063 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.5450149178504944 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/speckle-pattern |
| keywords[2].score | 0.5369412899017334 |
| keywords[2].display_name | Speckle pattern |
| keywords[3].id | https://openalex.org/keywords/histogram |
| keywords[3].score | 0.4835992157459259 |
| keywords[3].display_name | Histogram |
| keywords[4].id | https://openalex.org/keywords/fidelity |
| keywords[4].score | 0.45919254422187805 |
| keywords[4].display_name | Fidelity |
| keywords[5].id | https://openalex.org/keywords/multi-mode-optical-fiber |
| keywords[5].score | 0.4477072060108185 |
| keywords[5].display_name | Multi-mode optical fiber |
| keywords[6].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[6].score | 0.4354919493198395 |
| keywords[6].display_name | Iterative reconstruction |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.42479372024536133 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/mutual-information |
| keywords[8].score | 0.4247139096260071 |
| keywords[8].display_name | Mutual information |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.20245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.20245 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.20245 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Maqbool, Jawaria |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maqbool, Jawaria |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A4225013134 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Cheema, M. Imran |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Cheema, M. Imran |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.20245 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | HistoSpeckle-Net: Mutual Information-Guided Deep Learning for high-fidelity reconstruction of complex OrganAMNIST images via perturbed Multimode Fibers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:12:24.556248 |
| primary_topic.id | https://openalex.org/T11996 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.6284276247024536 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3102 |
| primary_topic.subfield.display_name | Acoustics and Ultrasonics |
| primary_topic.display_name | Random lasers and scattering media |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.20245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.20245 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.20245 |
| primary_location.id | pmh:oai:arXiv.org:2511.20245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.20245 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.20245 |
| publication_date | 2025-11-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 46, 62, 76, 112, 118, 136, 155 |
| abstract_inverted_index.By | 225 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.It | 152, 210 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.We | 116 |
| abstract_inverted_index.an | 68, 82 |
| abstract_inverted_index.as | 206 |
| abstract_inverted_index.in | 4, 246 |
| abstract_inverted_index.of | 105, 185 |
| abstract_inverted_index.on | 11, 130, 191 |
| abstract_inverted_index.to | 17, 51, 89, 123, 163, 243 |
| abstract_inverted_index.we | 43, 66, 110 |
| abstract_inverted_index.MMF | 58, 95, 240 |
| abstract_inverted_index.Our | 133, 189 |
| abstract_inverted_index.and | 37, 107, 127, 144, 182, 208, 219, 234 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 147 |
| abstract_inverted_index.not | 100 |
| abstract_inverted_index.the | 102, 179, 186, 192 |
| abstract_inverted_index.two | 174 |
| abstract_inverted_index.MMF, | 83 |
| abstract_inverted_index.also | 153 |
| abstract_inverted_index.both | 178 |
| abstract_inverted_index.data | 233 |
| abstract_inverted_index.deep | 1, 47 |
| abstract_inverted_index.even | 214 |
| abstract_inverted_index.from | 57 |
| abstract_inverted_index.have | 99 |
| abstract_inverted_index.into | 81 |
| abstract_inverted_index.loss | 122, 170, 175 |
| abstract_inverted_index.more | 31 |
| abstract_inverted_index.rich | 54 |
| abstract_inverted_index.such | 205 |
| abstract_inverted_index.than | 202 |
| abstract_inverted_index.that | 29, 71, 140, 197 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.unit | 139 |
| abstract_inverted_index.when | 33 |
| abstract_inverted_index.with | 35, 215, 231 |
| abstract_inverted_index.(MMF) | 7 |
| abstract_inverted_index.(SLM) | 80 |
| abstract_inverted_index.Index | 167 |
| abstract_inverted_index.These | 22 |
| abstract_inverted_index.U-Net | 207 |
| abstract_inverted_index.build | 61 |
| abstract_inverted_index.fiber | 6, 222, 236 |
| abstract_inverted_index.focus | 10 |
| abstract_inverted_index.gives | 211 |
| abstract_inverted_index.input | 90 |
| abstract_inverted_index.joint | 145 |
| abstract_inverted_index.large | 131 |
| abstract_inverted_index.laser | 73 |
| abstract_inverted_index.leads | 162 |
| abstract_inverted_index.light | 74, 78 |
| abstract_inverted_index.loss. | 151 |
| abstract_inverted_index.model | 125, 134 |
| abstract_inverted_index.often | 9 |
| abstract_inverted_index.setup | 70 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.under | 235 |
| abstract_inverted_index.which | 98, 161 |
| abstract_inverted_index.work, | 42 |
| abstract_inverted_index.(SSIM) | 169 |
| abstract_inverted_index.Unlike | 93 |
| abstract_inverted_index.across | 220 |
| abstract_inverted_index.brings | 239 |
| abstract_inverted_index.closer | 242 |
| abstract_inverted_index.employ | 117 |
| abstract_inverted_index.higher | 200 |
| abstract_inverted_index.images | 56 |
| abstract_inverted_index.models | 23, 204 |
| abstract_inverted_index.mutual | 120, 149 |
| abstract_inverted_index.output | 85 |
| abstract_inverted_index.reduce | 128 |
| abstract_inverted_index.smooth | 142 |
| abstract_inverted_index.tasks. | 21 |
| abstract_inverted_index.unique | 156 |
| abstract_inverted_index.Feature | 158 |
| abstract_inverted_index.Measure | 168 |
| abstract_inverted_index.Module, | 160 |
| abstract_inverted_index.becomes | 30 |
| abstract_inverted_index.bending | 223 |
| abstract_inverted_index.complex | 38, 193, 228 |
| abstract_inverted_index.couples | 72 |
| abstract_inverted_index.dataset | 195 |
| abstract_inverted_index.dealing | 34 |
| abstract_inverted_index.develop | 67 |
| abstract_inverted_index.diverse | 36 |
| abstract_inverted_index.enhance | 124, 177 |
| abstract_inverted_index.images, | 109 |
| abstract_inverted_index.images. | 39, 92, 188 |
| abstract_inverted_index.imaging | 8, 20, 96, 241 |
| abstract_inverted_index.limited | 216 |
| abstract_inverted_index.medical | 55 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.optical | 69 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.reduced | 232 |
| abstract_inverted_index.samples | 218 |
| abstract_inverted_index.simpler | 12 |
| abstract_inverted_index.spatial | 77 |
| abstract_inverted_index.speckle | 86 |
| abstract_inverted_index.through | 75 |
| abstract_inverted_index.varying | 221 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.Pix2Pix. | 209 |
| abstract_inverted_index.achieves | 199 |
| abstract_inverted_index.baseline | 203 |
| abstract_inverted_index.clinical | 248 |
| abstract_inverted_index.complex, | 18 |
| abstract_inverted_index.dataset, | 65 |
| abstract_inverted_index.designed | 50 |
| abstract_inverted_index.features | 230 |
| abstract_inverted_index.fidelity | 181, 201 |
| abstract_inverted_index.includes | 135 |
| abstract_inverted_index.learning | 2, 48, 114 |
| abstract_inverted_index.limiting | 14 |
| abstract_inverted_index.marginal | 143 |
| abstract_inverted_index.patterns | 87 |
| abstract_inverted_index.previous | 94 |
| abstract_inverted_index.relevant | 64 |
| abstract_inverted_index.reliance | 129 |
| abstract_inverted_index.speckles | 106 |
| abstract_inverted_index.superior | 212 |
| abstract_inverted_index.training | 217 |
| abstract_inverted_index.Together, | 172 |
| abstract_inverted_index.alignment | 184 |
| abstract_inverted_index.capturing | 84 |
| abstract_inverted_index.challenge | 28 |
| abstract_inverted_index.datasets, | 13 |
| abstract_inverted_index.datasets. | 132 |
| abstract_inverted_index.estimates | 141 |
| abstract_inverted_index.functions | 176 |
| abstract_inverted_index.histogram | 137 |
| abstract_inverted_index.introduce | 111 |
| abstract_inverted_index.modulator | 79 |
| abstract_inverted_index.multimode | 5 |
| abstract_inverted_index.practical | 244 |
| abstract_inverted_index.speckles. | 59 |
| abstract_inverted_index.strategy. | 115 |
| abstract_inverted_index.typically | 25 |
| abstract_inverted_index.Refinement | 159 |
| abstract_inverted_index.Similarity | 166 |
| abstract_inverted_index.Structural | 165 |
| abstract_inverted_index.anatomical | 229 |
| abstract_inverted_index.clinically | 63 |
| abstract_inverted_index.considered | 101 |
| abstract_inverted_index.deployment | 245 |
| abstract_inverted_index.histograms | 146 |
| abstract_inverted_index.multiscale | 164 |
| abstract_inverted_index.pronounced | 32 |
| abstract_inverted_index.real-world | 19, 247 |
| abstract_inverted_index.robustness | 126 |
| abstract_inverted_index.statistics | 104 |
| abstract_inverted_index.structural | 180 |
| abstract_inverted_index.underlying | 103 |
| abstract_inverted_index.OrganAMNIST | 91, 194 |
| abstract_inverted_index.Three-Scale | 157 |
| abstract_inverted_index.approaches, | 97 |
| abstract_inverted_index.calculating | 148 |
| abstract_inverted_index.computation | 138 |
| abstract_inverted_index.conditions. | 224 |
| abstract_inverted_index.demonstrate | 196 |
| abstract_inverted_index.effectively | 226 |
| abstract_inverted_index.experiments | 190 |
| abstract_inverted_index.information | 121, 150 |
| abstract_inverted_index.performance | 213 |
| abstract_inverted_index.reconstruct | 52 |
| abstract_inverted_index.statistical | 183 |
| abstract_inverted_index.architecture | 49 |
| abstract_inverted_index.computation. | 171 |
| abstract_inverted_index.incorporates | 154 |
| abstract_inverted_index.structurally | 53 |
| abstract_inverted_index.applicability | 16 |
| abstract_inverted_index.corresponding | 88 |
| abstract_inverted_index.environments. | 249 |
| abstract_inverted_index.reconstructed | 108, 187 |
| abstract_inverted_index.perturbations, | 237 |
| abstract_inverted_index.reconstructing | 227 |
| abstract_inverted_index.data-intensive, | 26 |
| abstract_inverted_index.histogram-based | 119 |
| abstract_inverted_index.HistoSpeckle-Net | 198, 238 |
| abstract_inverted_index.HistoSpeckle-Net, | 45 |
| abstract_inverted_index.distribution-aware | 113 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.79033579 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |