HMCFormer (hierarchical multi-scale convolutional transformer): a hybrid CNN+Transformer network for intelligent VIA screening Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.7717/peerj-cs.3088
Cervical cancer ranks first in incidence among malignant tumors of the female reproductive system, and 80% of women who die from cervical cancer worldwide are from developing countries. Visual inspection with acetic acid (VIA) screening based on artificial intelligence-assisted diagnosis can provide a cheap and rapid screening method. This will attract more low-income women to volunteer for regular cervical cancer screening. However, current AI-based VIA screening studies either have low accuracy or require expensive equipment assistance. In this article, we propose the Hierarchical Multi-Scale Convolutional Transformer network, which combines the hierarchical feature extraction capability of Convolutional Neural Network (CNNs) and the global dependency modeling capability of Transformers to address the challenges of realizing intelligent VIA screening. Hierarchical multi-scale convolutional transformer (HMCFormer) can be divided into a Transformer branch and a CNN branch. The Transformer branch receives unenhanced lesion sample images, and the CNN branch receives lesion sample images enhanced by the proposed dual-color space-based image enhancement algorithm. The authors design a hierarchical multi-scale pixel excitation module for adaptive multi-scale and multi-level local feature extraction. The authors apply the structure of the Swin Transformer network with minor modifications in the global perception modeling process. In addition, the authors propose two feature fusion concepts: adaptive preprocessing and superiority-inferiority fusion, and design a feature fusion module based on these concepts, which significantly improves the collaborative ability of the Transformer branch and the CNN branch. The authors collected and summarized 5,000 samples suitable for VIA screening methods from public datasets provided by companies such as Intel and Google, forming the PCC5000 dataset. On this dataset, the proposed algorithm achieves a screening accuracy of 97.4% and a grading accuracy of 94.8%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7717/peerj-cs.3088
- OA Status
- gold
- References
- 73
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412954491
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412954491Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7717/peerj-cs.3088Digital Object Identifier
- Title
-
HMCFormer (hierarchical multi-scale convolutional transformer): a hybrid CNN+Transformer network for intelligent VIA screeningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-05Full publication date if available
- Authors
-
Bo Feng, Chao Xu, Zhengping Li, Chuanyi ZhangList of authors in order
- Landing page
-
https://doi.org/10.7717/peerj-cs.3088Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7717/peerj-cs.3088Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Transformer, Artificial intelligence, Preprocessor, Pattern recognition (psychology), Feature extraction, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
73Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412954491 |
|---|---|
| doi | https://doi.org/10.7717/peerj-cs.3088 |
| ids.doi | https://doi.org/10.7717/peerj-cs.3088 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40989430 |
| ids.openalex | https://openalex.org/W4412954491 |
| fwci | 0.0 |
| type | article |
| title | HMCFormer (hierarchical multi-scale convolutional transformer): a hybrid CNN+Transformer network for intelligent VIA screening |
| awards[0].id | https://openalex.org/G6786803390 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019YFC0117800 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | e3088 |
| biblio.first_page | e3088 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9871000051498413 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9760000109672546 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1395 |
| apc_list.currency | USD |
| apc_list.value_usd | 1395 |
| apc_paid.value | 1395 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1395 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7086731195449829 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6364436149597168 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5903239846229553 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5647467374801636 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C34736171 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5191227793693542 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[4].display_name | Preprocessor |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.476992666721344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C52622490 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43521222472190857 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[6].display_name | Feature extraction |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1989048421382904 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C119599485 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[8].display_name | Electrical engineering |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7086731195449829 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6364436149597168 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.5903239846229553 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5647467374801636 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/preprocessor |
| keywords[4].score | 0.5191227793693542 |
| keywords[4].display_name | Preprocessor |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.476992666721344 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/feature-extraction |
| keywords[6].score | 0.43521222472190857 |
| keywords[6].display_name | Feature extraction |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.1989048421382904 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.7717/peerj-cs.3088 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210178049 |
| locations[0].source.issn | 2376-5992 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2376-5992 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PeerJ Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_name | PeerJ, Inc. |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_lineage_names | PeerJ, Inc. |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PeerJ Computer Science |
| locations[0].landing_page_url | https://doi.org/10.7717/peerj-cs.3088 |
| locations[1].id | pmid:40989430 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PeerJ. Computer science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40989430 |
| locations[2].id | pmh:oai:doaj.org/article:f9fe446bdfb6408e9d834dd32eeb0b55 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PeerJ Computer Science, Vol 11, p e3088 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/f9fe446bdfb6408e9d834dd32eeb0b55 |
| locations[3].id | pmh:oai:europepmc.org:11262818 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12453806 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:12453806 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PeerJ Comput Sci |
| locations[4].landing_page_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC12453806/ |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5052840612 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9861-3256 |
| authorships[0].author.display_name | Bo Feng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bo Feng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[1].author.id | https://openalex.org/A5112920389 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chao Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[1].affiliations[0].raw_affiliation_string | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[1].institutions[0].id | https://openalex.org/I143868143 |
| authorships[1].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chao Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[2].author.id | https://openalex.org/A5027676254 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7573-8822 |
| authorships[2].author.display_name | Zhengping Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[2].affiliations[0].raw_affiliation_string | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[2].institutions[0].id | https://openalex.org/I143868143 |
| authorships[2].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhengping Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, HeFei, Anhui, China |
| authorships[3].author.id | https://openalex.org/A5101465467 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8724-5796 |
| authorships[3].author.display_name | Chuanyi Zhang |
| authorships[3].affiliations[0].raw_affiliation_string | Obstetrics and Gynecology, People's Hospital of Fanchang District, Wuhu, Anhui, China |
| authorships[3].affiliations[1].raw_affiliation_string | Obstetrics and Gynecology, People’s Hospital of Fanchang District, Wuhu, Anhui, China |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chuanyi Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Obstetrics and Gynecology, People's Hospital of Fanchang District, Wuhu, Anhui, China, Obstetrics and Gynecology, People’s Hospital of Fanchang District, Wuhu, Anhui, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7717/peerj-cs.3088 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HMCFormer (hierarchical multi-scale convolutional transformer): a hybrid CNN+Transformer network for intelligent VIA screening |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W2095030957, https://openalex.org/W2066827917, https://openalex.org/W2601157893, https://openalex.org/W2373006798, https://openalex.org/W2131735617, https://openalex.org/W2056912418, https://openalex.org/W2033213769, https://openalex.org/W4312376745, https://openalex.org/W2136016640, https://openalex.org/W2049538278 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | doi:10.7717/peerj-cs.3088 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210178049 |
| best_oa_location.source.issn | 2376-5992 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2376-5992 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PeerJ Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_name | PeerJ, Inc. |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_lineage_names | PeerJ, Inc. |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PeerJ Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.7717/peerj-cs.3088 |
| primary_location.id | doi:10.7717/peerj-cs.3088 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210178049 |
| primary_location.source.issn | 2376-5992 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2376-5992 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PeerJ Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_name | PeerJ, Inc. |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_lineage_names | PeerJ, Inc. |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PeerJ Computer Science |
| primary_location.landing_page_url | https://doi.org/10.7717/peerj-cs.3088 |
| publication_date | 2025-08-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4284686811, https://openalex.org/W4386270359, https://openalex.org/W4286433536, https://openalex.org/W2803213113, https://openalex.org/W3160694286, https://openalex.org/W6855307858, https://openalex.org/W4392011842, https://openalex.org/W4295838521, https://openalex.org/W4408693953, https://openalex.org/W6684328148, https://openalex.org/W2928165649, https://openalex.org/W4360887305, https://openalex.org/W4399115818, https://openalex.org/W4389820631, https://openalex.org/W3049144774, https://openalex.org/W2908716024, https://openalex.org/W2759162212, https://openalex.org/W4256080149, https://openalex.org/W3024746232, https://openalex.org/W4281756776, https://openalex.org/W4391594064, https://openalex.org/W3159663321, https://openalex.org/W6803677459, https://openalex.org/W6792155083, https://openalex.org/W4376312661, https://openalex.org/W4391047432, https://openalex.org/W4388098534, https://openalex.org/W3006609195, https://openalex.org/W2978264737, https://openalex.org/W2005112602, https://openalex.org/W3130039502, https://openalex.org/W4386223554, https://openalex.org/W3013739129, https://openalex.org/W6749781174, https://openalex.org/W2068498451, https://openalex.org/W6851477881, https://openalex.org/W6803426362, https://openalex.org/W2922365569, https://openalex.org/W1979319218, https://openalex.org/W6686164453, https://openalex.org/W6793164127, https://openalex.org/W4283118969, https://openalex.org/W3139597885, https://openalex.org/W1486082332, https://openalex.org/W6851136385, https://openalex.org/W6771154167, https://openalex.org/W4392904527, https://openalex.org/W3175515048, https://openalex.org/W6848678680, https://openalex.org/W6791469159, https://openalex.org/W4400611185, https://openalex.org/W6810977221, https://openalex.org/W6805224724, https://openalex.org/W4403662396, https://openalex.org/W2616720730, https://openalex.org/W2970055610, https://openalex.org/W4223511167, https://openalex.org/W2963163009, https://openalex.org/W4392910325, https://openalex.org/W3138516171, https://openalex.org/W3145444543, https://openalex.org/W3102737931, https://openalex.org/W4312349930, https://openalex.org/W4390872447, https://openalex.org/W4312820606, https://openalex.org/W4319300717, https://openalex.org/W3204255739, https://openalex.org/W2183341477, https://openalex.org/W3042011474, https://openalex.org/W2164188216, https://openalex.org/W3211647829, https://openalex.org/W4390874053, https://openalex.org/W4386076493 |
| referenced_works_count | 73 |
| abstract_inverted_index.a | 42, 125, 129, 160, 209, 265, 271 |
| abstract_inverted_index.In | 76, 193 |
| abstract_inverted_index.On | 258 |
| abstract_inverted_index.as | 250 |
| abstract_inverted_index.be | 122 |
| abstract_inverted_index.by | 149, 247 |
| abstract_inverted_index.in | 4, 187 |
| abstract_inverted_index.of | 9, 16, 94, 105, 111, 179, 223, 268, 274 |
| abstract_inverted_index.on | 36, 214 |
| abstract_inverted_index.or | 71 |
| abstract_inverted_index.to | 54, 107 |
| abstract_inverted_index.we | 79 |
| abstract_inverted_index.80% | 15 |
| abstract_inverted_index.CNN | 130, 142, 229 |
| abstract_inverted_index.The | 132, 157, 174, 231 |
| abstract_inverted_index.VIA | 64, 114, 240 |
| abstract_inverted_index.and | 14, 44, 99, 128, 140, 169, 204, 207, 227, 234, 252, 270 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.can | 40, 121 |
| abstract_inverted_index.die | 19 |
| abstract_inverted_index.for | 56, 166, 239 |
| abstract_inverted_index.low | 69 |
| abstract_inverted_index.the | 10, 81, 89, 100, 109, 141, 150, 177, 180, 188, 195, 220, 224, 228, 255, 261 |
| abstract_inverted_index.two | 198 |
| abstract_inverted_index.who | 18 |
| abstract_inverted_index.Swin | 181 |
| abstract_inverted_index.This | 48 |
| abstract_inverted_index.acid | 32 |
| abstract_inverted_index.from | 20, 25, 243 |
| abstract_inverted_index.have | 68 |
| abstract_inverted_index.into | 124 |
| abstract_inverted_index.more | 51 |
| abstract_inverted_index.such | 249 |
| abstract_inverted_index.this | 77, 259 |
| abstract_inverted_index.will | 49 |
| abstract_inverted_index.with | 30, 184 |
| abstract_inverted_index.(VIA) | 33 |
| abstract_inverted_index.5,000 | 236 |
| abstract_inverted_index.97.4% | 269 |
| abstract_inverted_index.Intel | 251 |
| abstract_inverted_index.among | 6 |
| abstract_inverted_index.apply | 176 |
| abstract_inverted_index.based | 35, 213 |
| abstract_inverted_index.cheap | 43 |
| abstract_inverted_index.first | 3 |
| abstract_inverted_index.image | 154 |
| abstract_inverted_index.local | 171 |
| abstract_inverted_index.minor | 185 |
| abstract_inverted_index.pixel | 163 |
| abstract_inverted_index.ranks | 2 |
| abstract_inverted_index.rapid | 45 |
| abstract_inverted_index.these | 215 |
| abstract_inverted_index.which | 87, 217 |
| abstract_inverted_index.women | 17, 53 |
| abstract_inverted_index.(CNNs) | 98 |
| abstract_inverted_index.94.8%. | 275 |
| abstract_inverted_index.Neural | 96 |
| abstract_inverted_index.Visual | 28 |
| abstract_inverted_index.acetic | 31 |
| abstract_inverted_index.branch | 127, 134, 143, 226 |
| abstract_inverted_index.cancer | 1, 22, 59 |
| abstract_inverted_index.design | 159, 208 |
| abstract_inverted_index.either | 67 |
| abstract_inverted_index.female | 11 |
| abstract_inverted_index.fusion | 200, 211 |
| abstract_inverted_index.global | 101, 189 |
| abstract_inverted_index.images | 147 |
| abstract_inverted_index.lesion | 137, 145 |
| abstract_inverted_index.module | 165, 212 |
| abstract_inverted_index.public | 244 |
| abstract_inverted_index.sample | 138, 146 |
| abstract_inverted_index.tumors | 8 |
| abstract_inverted_index.Google, | 253 |
| abstract_inverted_index.Network | 97 |
| abstract_inverted_index.PCC5000 | 256 |
| abstract_inverted_index.ability | 222 |
| abstract_inverted_index.address | 108 |
| abstract_inverted_index.attract | 50 |
| abstract_inverted_index.authors | 158, 175, 196, 232 |
| abstract_inverted_index.branch. | 131, 230 |
| abstract_inverted_index.current | 62 |
| abstract_inverted_index.divided | 123 |
| abstract_inverted_index.feature | 91, 172, 199, 210 |
| abstract_inverted_index.forming | 254 |
| abstract_inverted_index.fusion, | 206 |
| abstract_inverted_index.grading | 272 |
| abstract_inverted_index.images, | 139 |
| abstract_inverted_index.method. | 47 |
| abstract_inverted_index.methods | 242 |
| abstract_inverted_index.network | 183 |
| abstract_inverted_index.propose | 80, 197 |
| abstract_inverted_index.provide | 41 |
| abstract_inverted_index.regular | 57 |
| abstract_inverted_index.require | 72 |
| abstract_inverted_index.samples | 237 |
| abstract_inverted_index.studies | 66 |
| abstract_inverted_index.system, | 13 |
| abstract_inverted_index.AI-based | 63 |
| abstract_inverted_index.Cervical | 0 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.accuracy | 70, 267, 273 |
| abstract_inverted_index.achieves | 264 |
| abstract_inverted_index.adaptive | 167, 202 |
| abstract_inverted_index.article, | 78 |
| abstract_inverted_index.cervical | 21, 58 |
| abstract_inverted_index.combines | 88 |
| abstract_inverted_index.dataset, | 260 |
| abstract_inverted_index.dataset. | 257 |
| abstract_inverted_index.datasets | 245 |
| abstract_inverted_index.enhanced | 148 |
| abstract_inverted_index.improves | 219 |
| abstract_inverted_index.modeling | 103, 191 |
| abstract_inverted_index.network, | 86 |
| abstract_inverted_index.process. | 192 |
| abstract_inverted_index.proposed | 151, 262 |
| abstract_inverted_index.provided | 246 |
| abstract_inverted_index.receives | 135, 144 |
| abstract_inverted_index.suitable | 238 |
| abstract_inverted_index.addition, | 194 |
| abstract_inverted_index.algorithm | 263 |
| abstract_inverted_index.collected | 233 |
| abstract_inverted_index.companies | 248 |
| abstract_inverted_index.concepts, | 216 |
| abstract_inverted_index.concepts: | 201 |
| abstract_inverted_index.diagnosis | 39 |
| abstract_inverted_index.equipment | 74 |
| abstract_inverted_index.expensive | 73 |
| abstract_inverted_index.incidence | 5 |
| abstract_inverted_index.malignant | 7 |
| abstract_inverted_index.realizing | 112 |
| abstract_inverted_index.screening | 34, 46, 65, 241, 266 |
| abstract_inverted_index.structure | 178 |
| abstract_inverted_index.volunteer | 55 |
| abstract_inverted_index.worldwide | 23 |
| abstract_inverted_index.algorithm. | 156 |
| abstract_inverted_index.artificial | 37 |
| abstract_inverted_index.capability | 93, 104 |
| abstract_inverted_index.challenges | 110 |
| abstract_inverted_index.countries. | 27 |
| abstract_inverted_index.dependency | 102 |
| abstract_inverted_index.developing | 26 |
| abstract_inverted_index.dual-color | 152 |
| abstract_inverted_index.excitation | 164 |
| abstract_inverted_index.extraction | 92 |
| abstract_inverted_index.inspection | 29 |
| abstract_inverted_index.low-income | 52 |
| abstract_inverted_index.perception | 190 |
| abstract_inverted_index.screening. | 60, 115 |
| abstract_inverted_index.summarized | 235 |
| abstract_inverted_index.unenhanced | 136 |
| abstract_inverted_index.(HMCFormer) | 120 |
| abstract_inverted_index.Multi-Scale | 83 |
| abstract_inverted_index.Transformer | 85, 126, 133, 182, 225 |
| abstract_inverted_index.assistance. | 75 |
| abstract_inverted_index.enhancement | 155 |
| abstract_inverted_index.extraction. | 173 |
| abstract_inverted_index.intelligent | 113 |
| abstract_inverted_index.multi-level | 170 |
| abstract_inverted_index.multi-scale | 117, 162, 168 |
| abstract_inverted_index.space-based | 153 |
| abstract_inverted_index.transformer | 119 |
| abstract_inverted_index.Hierarchical | 82, 116 |
| abstract_inverted_index.Transformers | 106 |
| abstract_inverted_index.hierarchical | 90, 161 |
| abstract_inverted_index.reproductive | 12 |
| abstract_inverted_index.Convolutional | 84, 95 |
| abstract_inverted_index.collaborative | 221 |
| abstract_inverted_index.convolutional | 118 |
| abstract_inverted_index.modifications | 186 |
| abstract_inverted_index.preprocessing | 203 |
| abstract_inverted_index.significantly | 218 |
| abstract_inverted_index.intelligence-assisted | 38 |
| abstract_inverted_index.superiority-inferiority | 205 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14744312 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |