Hochschild cohomology of symmetric groups and generating functions, II Article Swipe
David J. Benson
,
Radha Kessar
,
Markus Linckelmann
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s40687-023-00382-2
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s40687-023-00382-2
We relate the generating functions of the dimensions of the Hochschild cohomology in any fixed degree of the symmetric groups with those of blocks of the symmetric groups. We show that the first Hochschild cohomology of a positive defect block of a symmetric group is nonzero, answering in the affirmative a question of the third author. To do this, we prove a formula expressing the dimension of degree one Hochschild cohomology as a sum of dimensions of centres of blocks of smaller symmetric groups. This in turn is a consequence of a general formula that makes more precise a theorem of our previous paper describing the generating functions for the dimensions of Hochschild cohomology of symmetric groups.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40687-023-00382-2
- https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdf
- OA Status
- hybrid
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4372286345
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4372286345Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40687-023-00382-2Digital Object Identifier
- Title
-
Hochschild cohomology of symmetric groups and generating functions, IIWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-05Full publication date if available
- Authors
-
David J. Benson, Radha Kessar, Markus LinckelmannList of authors in order
- Landing page
-
https://doi.org/10.1007/s40687-023-00382-2Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdfDirect OA link when available
- Concepts
-
Mathematics, Cohomology, Dimension (graph theory), Pure mathematics, Symmetric group, Group (periodic table), Degree (music), Symmetric function, Block (permutation group theory), Algebra over a field, Combinatorics, Chemistry, Acoustics, Physics, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4372286345 |
|---|---|
| doi | https://doi.org/10.1007/s40687-023-00382-2 |
| ids.doi | https://doi.org/10.1007/s40687-023-00382-2 |
| ids.openalex | https://openalex.org/W4372286345 |
| fwci | 0.0 |
| type | article |
| title | Hochschild cohomology of symmetric groups and generating functions, II |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| grants[0].funder | https://openalex.org/F4320334627 |
| grants[0].award_id | EP/T004592/1 |
| grants[0].funder_display_name | Engineering and Physical Sciences Research Council |
| topics[0].id | https://openalex.org/T11680 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Advanced Algebra and Geometry |
| topics[1].id | https://openalex.org/T10287 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Algebraic structures and combinatorial models |
| topics[2].id | https://openalex.org/T10849 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Finite Group Theory Research |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list.value | 2790 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3590 |
| apc_paid.value | 2790 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3590 |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8899803161621094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C78606066 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8665338754653931 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1198376 |
| concepts[1].display_name | Cohomology |
| concepts[2].id | https://openalex.org/C33676613 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6191346645355225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[2].display_name | Dimension (graph theory) |
| concepts[3].id | https://openalex.org/C202444582 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5658294558525085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[3].display_name | Pure mathematics |
| concepts[4].id | https://openalex.org/C128622974 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5568543076515198 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q849512 |
| concepts[4].display_name | Symmetric group |
| concepts[5].id | https://openalex.org/C2781311116 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5548737645149231 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[5].display_name | Group (periodic table) |
| concepts[6].id | https://openalex.org/C2775997480 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4808145761489868 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q586277 |
| concepts[6].display_name | Degree (music) |
| concepts[7].id | https://openalex.org/C3746008 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4636671841144562 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q981351 |
| concepts[7].display_name | Symmetric function |
| concepts[8].id | https://openalex.org/C2777210771 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43370622396469116 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[8].display_name | Block (permutation group theory) |
| concepts[9].id | https://openalex.org/C136119220 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3295518755912781 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[9].display_name | Algebra over a field |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.31134873628616333 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C24890656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[12].display_name | Acoustics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.8899803161621094 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/cohomology |
| keywords[1].score | 0.8665338754653931 |
| keywords[1].display_name | Cohomology |
| keywords[2].id | https://openalex.org/keywords/dimension |
| keywords[2].score | 0.6191346645355225 |
| keywords[2].display_name | Dimension (graph theory) |
| keywords[3].id | https://openalex.org/keywords/pure-mathematics |
| keywords[3].score | 0.5658294558525085 |
| keywords[3].display_name | Pure mathematics |
| keywords[4].id | https://openalex.org/keywords/symmetric-group |
| keywords[4].score | 0.5568543076515198 |
| keywords[4].display_name | Symmetric group |
| keywords[5].id | https://openalex.org/keywords/group |
| keywords[5].score | 0.5548737645149231 |
| keywords[5].display_name | Group (periodic table) |
| keywords[6].id | https://openalex.org/keywords/degree |
| keywords[6].score | 0.4808145761489868 |
| keywords[6].display_name | Degree (music) |
| keywords[7].id | https://openalex.org/keywords/symmetric-function |
| keywords[7].score | 0.4636671841144562 |
| keywords[7].display_name | Symmetric function |
| keywords[8].id | https://openalex.org/keywords/block |
| keywords[8].score | 0.43370622396469116 |
| keywords[8].display_name | Block (permutation group theory) |
| keywords[9].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[9].score | 0.3295518755912781 |
| keywords[9].display_name | Algebra over a field |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.31134873628616333 |
| keywords[10].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.1007/s40687-023-00382-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737856571 |
| locations[0].source.issn | 2197-9847, 2522-0144 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2197-9847 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research in the Mathematical Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Research in the Mathematical Sciences |
| locations[0].landing_page_url | https://doi.org/10.1007/s40687-023-00382-2 |
| locations[1].id | pmh:oai:openaccess.city.ac.uk:30607 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401940 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | City Research Online (City University London) |
| locations[1].source.host_organization | https://openalex.org/I180825142 |
| locations[1].source.host_organization_name | City, University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I180825142 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | PeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://openaccess.city.ac.uk/view/creators_id/markus=2Elinckelmann=2E1.html> |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063396220 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4627-0340 |
| authorships[0].author.display_name | David J. Benson |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I195460627 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Mathematics, Fraser Noble Building, University of Aberdeen, King's College, Aberdeen, AB24 3UE, UK |
| authorships[0].institutions[0].id | https://openalex.org/I195460627 |
| authorships[0].institutions[0].ror | https://ror.org/016476m91 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I195460627 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Aberdeen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David Benson |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Mathematics, Fraser Noble Building, University of Aberdeen, King's College, Aberdeen, AB24 3UE, UK |
| authorships[1].author.id | https://openalex.org/A5040638896 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1893-4237 |
| authorships[1].author.display_name | Radha Kessar |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I28407311 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK |
| authorships[1].institutions[0].id | https://openalex.org/I28407311 |
| authorships[1].institutions[0].ror | https://ror.org/027m9bs27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I28407311 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Manchester |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Radha Kessar |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK |
| authorships[2].author.id | https://openalex.org/A5023856789 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Markus Linckelmann |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180825142 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Science and Technology, Department of Mathematics City, University of London, Northampton Square, London, EC1V 0HB, UK |
| authorships[2].institutions[0].id | https://openalex.org/I180825142 |
| authorships[2].institutions[0].ror | https://ror.org/04489at23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I180825142 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | City, University of London |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Markus Linckelmann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Science and Technology, Department of Mathematics City, University of London, Northampton Square, London, EC1V 0HB, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hochschild cohomology of symmetric groups and generating functions, II |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11680 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Advanced Algebra and Geometry |
| related_works | https://openalex.org/W2358230335, https://openalex.org/W1996969552, https://openalex.org/W2165910984, https://openalex.org/W2466298547, https://openalex.org/W4297749837, https://openalex.org/W2037837540, https://openalex.org/W1995202720, https://openalex.org/W4387355916, https://openalex.org/W1667518552, https://openalex.org/W4205618276 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40687-023-00382-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737856571 |
| best_oa_location.source.issn | 2197-9847, 2522-0144 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2197-9847 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research in the Mathematical Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Research in the Mathematical Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40687-023-00382-2 |
| primary_location.id | doi:10.1007/s40687-023-00382-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737856571 |
| primary_location.source.issn | 2197-9847, 2522-0144 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2197-9847 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research in the Mathematical Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40687-023-00382-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Research in the Mathematical Sciences |
| primary_location.landing_page_url | https://doi.org/10.1007/s40687-023-00382-2 |
| publication_date | 2023-05-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2102012038, https://openalex.org/W2018794851, https://openalex.org/W2802783178, https://openalex.org/W4283315200 |
| referenced_works_count | 4 |
| abstract_inverted_index.a | 37, 42, 51, 62, 73, 89, 92, 99 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.We | 1, 29 |
| abstract_inverted_index.as | 72 |
| abstract_inverted_index.do | 58 |
| abstract_inverted_index.in | 13, 48, 86 |
| abstract_inverted_index.is | 45, 88 |
| abstract_inverted_index.of | 6, 9, 17, 23, 25, 36, 41, 53, 67, 75, 77, 79, 81, 91, 101, 112, 115 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.any | 14 |
| abstract_inverted_index.for | 109 |
| abstract_inverted_index.one | 69 |
| abstract_inverted_index.our | 102 |
| abstract_inverted_index.sum | 74 |
| abstract_inverted_index.the | 3, 7, 10, 18, 26, 32, 49, 54, 65, 106, 110 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.more | 97 |
| abstract_inverted_index.show | 30 |
| abstract_inverted_index.that | 31, 95 |
| abstract_inverted_index.turn | 87 |
| abstract_inverted_index.with | 21 |
| abstract_inverted_index.block | 40 |
| abstract_inverted_index.first | 33 |
| abstract_inverted_index.fixed | 15 |
| abstract_inverted_index.group | 44 |
| abstract_inverted_index.makes | 96 |
| abstract_inverted_index.paper | 104 |
| abstract_inverted_index.prove | 61 |
| abstract_inverted_index.third | 55 |
| abstract_inverted_index.this, | 59 |
| abstract_inverted_index.those | 22 |
| abstract_inverted_index.blocks | 24, 80 |
| abstract_inverted_index.defect | 39 |
| abstract_inverted_index.degree | 16, 68 |
| abstract_inverted_index.groups | 20 |
| abstract_inverted_index.relate | 2 |
| abstract_inverted_index.author. | 56 |
| abstract_inverted_index.centres | 78 |
| abstract_inverted_index.formula | 63, 94 |
| abstract_inverted_index.general | 93 |
| abstract_inverted_index.groups. | 28, 84, 117 |
| abstract_inverted_index.precise | 98 |
| abstract_inverted_index.smaller | 82 |
| abstract_inverted_index.theorem | 100 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.nonzero, | 46 |
| abstract_inverted_index.positive | 38 |
| abstract_inverted_index.previous | 103 |
| abstract_inverted_index.question | 52 |
| abstract_inverted_index.answering | 47 |
| abstract_inverted_index.dimension | 66 |
| abstract_inverted_index.functions | 5, 108 |
| abstract_inverted_index.symmetric | 19, 27, 43, 83, 116 |
| abstract_inverted_index.Hochschild | 11, 34, 70, 113 |
| abstract_inverted_index.cohomology | 12, 35, 71, 114 |
| abstract_inverted_index.describing | 105 |
| abstract_inverted_index.dimensions | 8, 76, 111 |
| abstract_inverted_index.expressing | 64 |
| abstract_inverted_index.generating | 4, 107 |
| abstract_inverted_index.affirmative | 50 |
| abstract_inverted_index.consequence | 90 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5040638896 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I28407311 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.14763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |