Holistic Load Balancing for Heterogeneous AI Infrastructures: A Graph Neural Network Approach Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17822484
The proliferation of Artificial Intelligence (AI) workloads, ranging from large-scale model training to real-time inference, presents unprecedented challenges for underlying computational infrastructures. These infrastructures are increasingly heterogeneous, comprising diverse accelerators such as GPUs, FPGAs, TPUs, and specialized AI ASICs, each with distinct capabilities and optimal performance profiles. Traditional load balancing strategies, often designed for homogeneous general-purpose computing, fall short in effectively managing the complex interplay of diverse AI tasks and varied hardware resources. This paper proposes a novel, holistic load balancing approach for heterogeneous AI infrastructures leveraging Graph Neural Networks (GNNs). We model the entire infrastructure—including compute nodes, network topology, pending AI tasks, and task dependencies—as a dynamic graph. The GNN is trained to learn complex spatial and temporal relationships within this graph, enabling it to make informed, adaptive resource allocation and task scheduling decisions that optimize for multiple objectives such as minimizing task completion time, maximizing resource utilization, and enhancing energy efficiency. Our methodology details the GNN architecture, feature engineering for heterogeneous environments, training strategies using simulated and real-world data, and comprehensive evaluation metrics. Initial findings, derived from extensive simulations, demonstrate that the GNN-based approach significantly outperforms conventional and heuristic-based load balancing methods by achieving superior resource utilization, reduced task latency, and improved overall system throughput in dynamic, heterogeneous AI environments. This research contributes a robust and scalable framework for intelligent resource management in the rapidly evolving landscape of AI computing.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17822484
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108731992
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108731992Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17822484Digital Object Identifier
- Title
-
Holistic Load Balancing for Heterogeneous AI Infrastructures: A Graph Neural Network ApproachWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-04Full publication date if available
- Authors
-
Revista, Zen, IA, 10List of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17822484Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17822484Direct OA link when available
- Concepts
-
Computer science, Load balancing (electrical power), Scalability, Distributed computing, Scheduling (production processes), Artificial neural network, Artificial intelligence, Task (project management), Machine learning, Graph, Robustness (evolution), Homogeneous, Heterogeneous network, Adaptation (eye), Task analysis, Resource (disambiguation), Feature (linguistics), Job shop scheduling, Resource allocation, Load management, Resource efficiency, Feature engineering, Resource management (computing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108731992 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17822484 |
| ids.doi | https://doi.org/10.5281/zenodo.17822484 |
| ids.openalex | https://openalex.org/W7108731992 |
| fwci | 0.0 |
| type | article |
| title | Holistic Load Balancing for Heterogeneous AI Infrastructures: A Graph Neural Network Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12292 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.3456946015357971 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Graph Theory and Algorithms |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.2046610713005066 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.09828244149684906 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7916090488433838 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C138959212 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7047097682952881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1806783 |
| concepts[1].display_name | Load balancing (electrical power) |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6119632124900818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5893096923828125 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C206729178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5574491024017334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[4].display_name | Scheduling (production processes) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5074821710586548 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5005016326904297 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2780451532 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4596746265888214 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[7].display_name | Task (project management) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41479530930519104 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C132525143 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3733058273792267 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[9].display_name | Graph |
| concepts[10].id | https://openalex.org/C63479239 |
| concepts[10].level | 3 |
| concepts[10].score | 0.35084637999534607 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[10].display_name | Robustness (evolution) |
| concepts[11].id | https://openalex.org/C66882249 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3451753556728363 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[11].display_name | Homogeneous |
| concepts[12].id | https://openalex.org/C158207573 |
| concepts[12].level | 4 |
| concepts[12].score | 0.339286744594574 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5747224 |
| concepts[12].display_name | Heterogeneous network |
| concepts[13].id | https://openalex.org/C139807058 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33114758133888245 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[13].display_name | Adaptation (eye) |
| concepts[14].id | https://openalex.org/C175154964 |
| concepts[14].level | 3 |
| concepts[14].score | 0.2965032756328583 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[14].display_name | Task analysis |
| concepts[15].id | https://openalex.org/C206345919 |
| concepts[15].level | 2 |
| concepts[15].score | 0.29392319917678833 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[15].display_name | Resource (disambiguation) |
| concepts[16].id | https://openalex.org/C2776401178 |
| concepts[16].level | 2 |
| concepts[16].score | 0.28216972947120667 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[16].display_name | Feature (linguistics) |
| concepts[17].id | https://openalex.org/C55416958 |
| concepts[17].level | 3 |
| concepts[17].score | 0.27748942375183105 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q6206757 |
| concepts[17].display_name | Job shop scheduling |
| concepts[18].id | https://openalex.org/C29202148 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2766948938369751 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q287260 |
| concepts[18].display_name | Resource allocation |
| concepts[19].id | https://openalex.org/C2779370713 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2748171389102936 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q357554 |
| concepts[19].display_name | Load management |
| concepts[20].id | https://openalex.org/C2777958785 |
| concepts[20].level | 2 |
| concepts[20].score | 0.27466094493865967 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q17120940 |
| concepts[20].display_name | Resource efficiency |
| concepts[21].id | https://openalex.org/C2778827112 |
| concepts[21].level | 3 |
| concepts[21].score | 0.26628589630126953 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[21].display_name | Feature engineering |
| concepts[22].id | https://openalex.org/C2780609101 |
| concepts[22].level | 2 |
| concepts[22].score | 0.25084447860717773 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q17156588 |
| concepts[22].display_name | Resource management (computing) |
| keywords[0].id | https://openalex.org/keywords/load-balancing |
| keywords[0].score | 0.7047097682952881 |
| keywords[0].display_name | Load balancing (electrical power) |
| keywords[1].id | https://openalex.org/keywords/scalability |
| keywords[1].score | 0.6119632124900818 |
| keywords[1].display_name | Scalability |
| keywords[2].id | https://openalex.org/keywords/scheduling |
| keywords[2].score | 0.5574491024017334 |
| keywords[2].display_name | Scheduling (production processes) |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5074821710586548 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/task |
| keywords[4].score | 0.4596746265888214 |
| keywords[4].display_name | Task (project management) |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.3733058273792267 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.35084637999534607 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/homogeneous |
| keywords[7].score | 0.3451753556728363 |
| keywords[7].display_name | Homogeneous |
| language | |
| locations[0].id | doi:10.5281/zenodo.17822484 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17822484 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Revista, Zen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Revista, Zen |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | IA, 10 |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | IA, 10 |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17822484 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Holistic Load Balancing for Heterogeneous AI Infrastructures: A Graph Neural Network Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-05T23:25:22.460635 |
| primary_topic.id | https://openalex.org/T12292 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.3456946015357971 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Graph Theory and Algorithms |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17822484 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17822484 |
| primary_location.id | doi:10.5281/zenodo.17822484 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17822484 |
| publication_date | 2025-12-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 76, 106, 215 |
| abstract_inverted_index.AI | 37, 67, 84, 101, 210, 230 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.as | 31, 141 |
| abstract_inverted_index.by | 194 |
| abstract_inverted_index.in | 59, 207, 224 |
| abstract_inverted_index.is | 111 |
| abstract_inverted_index.it | 124 |
| abstract_inverted_index.of | 2, 65, 229 |
| abstract_inverted_index.to | 12, 113, 125 |
| abstract_inverted_index.GNN | 110, 157 |
| abstract_inverted_index.Our | 153 |
| abstract_inverted_index.The | 0, 109 |
| abstract_inverted_index.and | 35, 43, 69, 103, 117, 131, 149, 168, 171, 189, 202, 217 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 18, 53, 82, 137, 161, 220 |
| abstract_inverted_index.the | 62, 93, 156, 183, 225 |
| abstract_inverted_index.(AI) | 5 |
| abstract_inverted_index.This | 73, 212 |
| abstract_inverted_index.each | 39 |
| abstract_inverted_index.fall | 57 |
| abstract_inverted_index.from | 8, 178 |
| abstract_inverted_index.load | 48, 79, 191 |
| abstract_inverted_index.make | 126 |
| abstract_inverted_index.such | 30, 140 |
| abstract_inverted_index.task | 104, 132, 143, 200 |
| abstract_inverted_index.that | 135, 182 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.GPUs, | 32 |
| abstract_inverted_index.Graph | 87 |
| abstract_inverted_index.TPUs, | 34 |
| abstract_inverted_index.These | 22 |
| abstract_inverted_index.data, | 170 |
| abstract_inverted_index.learn | 114 |
| abstract_inverted_index.model | 10, 92 |
| abstract_inverted_index.often | 51 |
| abstract_inverted_index.paper | 74 |
| abstract_inverted_index.short | 58 |
| abstract_inverted_index.tasks | 68 |
| abstract_inverted_index.time, | 145 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.ASICs, | 38 |
| abstract_inverted_index.FPGAs, | 33 |
| abstract_inverted_index.Neural | 88 |
| abstract_inverted_index.energy | 151 |
| abstract_inverted_index.entire | 94 |
| abstract_inverted_index.graph, | 122 |
| abstract_inverted_index.graph. | 108 |
| abstract_inverted_index.nodes, | 97 |
| abstract_inverted_index.novel, | 77 |
| abstract_inverted_index.robust | 216 |
| abstract_inverted_index.system | 205 |
| abstract_inverted_index.tasks, | 102 |
| abstract_inverted_index.varied | 70 |
| abstract_inverted_index.within | 120 |
| abstract_inverted_index.(GNNs). | 90 |
| abstract_inverted_index.Initial | 175 |
| abstract_inverted_index.complex | 63, 115 |
| abstract_inverted_index.compute | 96 |
| abstract_inverted_index.derived | 177 |
| abstract_inverted_index.details | 155 |
| abstract_inverted_index.diverse | 28, 66 |
| abstract_inverted_index.dynamic | 107 |
| abstract_inverted_index.feature | 159 |
| abstract_inverted_index.methods | 193 |
| abstract_inverted_index.network | 98 |
| abstract_inverted_index.optimal | 44 |
| abstract_inverted_index.overall | 204 |
| abstract_inverted_index.pending | 100 |
| abstract_inverted_index.ranging | 7 |
| abstract_inverted_index.rapidly | 226 |
| abstract_inverted_index.reduced | 199 |
| abstract_inverted_index.spatial | 116 |
| abstract_inverted_index.trained | 112 |
| abstract_inverted_index.Networks | 89 |
| abstract_inverted_index.adaptive | 128 |
| abstract_inverted_index.approach | 81, 185 |
| abstract_inverted_index.designed | 52 |
| abstract_inverted_index.distinct | 41 |
| abstract_inverted_index.dynamic, | 208 |
| abstract_inverted_index.enabling | 123 |
| abstract_inverted_index.evolving | 227 |
| abstract_inverted_index.hardware | 71 |
| abstract_inverted_index.holistic | 78 |
| abstract_inverted_index.improved | 203 |
| abstract_inverted_index.latency, | 201 |
| abstract_inverted_index.managing | 61 |
| abstract_inverted_index.metrics. | 174 |
| abstract_inverted_index.multiple | 138 |
| abstract_inverted_index.optimize | 136 |
| abstract_inverted_index.presents | 15 |
| abstract_inverted_index.proposes | 75 |
| abstract_inverted_index.research | 213 |
| abstract_inverted_index.resource | 129, 147, 197, 222 |
| abstract_inverted_index.scalable | 218 |
| abstract_inverted_index.superior | 196 |
| abstract_inverted_index.temporal | 118 |
| abstract_inverted_index.training | 11, 164 |
| abstract_inverted_index.GNN-based | 184 |
| abstract_inverted_index.achieving | 195 |
| abstract_inverted_index.balancing | 49, 80, 192 |
| abstract_inverted_index.decisions | 134 |
| abstract_inverted_index.enhancing | 150 |
| abstract_inverted_index.extensive | 179 |
| abstract_inverted_index.findings, | 176 |
| abstract_inverted_index.framework | 219 |
| abstract_inverted_index.informed, | 127 |
| abstract_inverted_index.interplay | 64 |
| abstract_inverted_index.landscape | 228 |
| abstract_inverted_index.profiles. | 46 |
| abstract_inverted_index.real-time | 13 |
| abstract_inverted_index.simulated | 167 |
| abstract_inverted_index.topology, | 99 |
| abstract_inverted_index.Artificial | 3 |
| abstract_inverted_index.allocation | 130 |
| abstract_inverted_index.challenges | 17 |
| abstract_inverted_index.completion | 144 |
| abstract_inverted_index.comprising | 27 |
| abstract_inverted_index.computing, | 56 |
| abstract_inverted_index.computing. | 231 |
| abstract_inverted_index.evaluation | 173 |
| abstract_inverted_index.inference, | 14 |
| abstract_inverted_index.leveraging | 86 |
| abstract_inverted_index.management | 223 |
| abstract_inverted_index.maximizing | 146 |
| abstract_inverted_index.minimizing | 142 |
| abstract_inverted_index.objectives | 139 |
| abstract_inverted_index.real-world | 169 |
| abstract_inverted_index.resources. | 72 |
| abstract_inverted_index.scheduling | 133 |
| abstract_inverted_index.strategies | 165 |
| abstract_inverted_index.throughput | 206 |
| abstract_inverted_index.underlying | 19 |
| abstract_inverted_index.workloads, | 6 |
| abstract_inverted_index.Traditional | 47 |
| abstract_inverted_index.contributes | 214 |
| abstract_inverted_index.demonstrate | 181 |
| abstract_inverted_index.effectively | 60 |
| abstract_inverted_index.efficiency. | 152 |
| abstract_inverted_index.engineering | 160 |
| abstract_inverted_index.homogeneous | 54 |
| abstract_inverted_index.intelligent | 221 |
| abstract_inverted_index.large-scale | 9 |
| abstract_inverted_index.methodology | 154 |
| abstract_inverted_index.outperforms | 187 |
| abstract_inverted_index.performance | 45 |
| abstract_inverted_index.specialized | 36 |
| abstract_inverted_index.strategies, | 50 |
| abstract_inverted_index.Intelligence | 4 |
| abstract_inverted_index.accelerators | 29 |
| abstract_inverted_index.capabilities | 42 |
| abstract_inverted_index.conventional | 188 |
| abstract_inverted_index.increasingly | 25 |
| abstract_inverted_index.simulations, | 180 |
| abstract_inverted_index.utilization, | 148, 198 |
| abstract_inverted_index.architecture, | 158 |
| abstract_inverted_index.comprehensive | 172 |
| abstract_inverted_index.computational | 20 |
| abstract_inverted_index.environments, | 163 |
| abstract_inverted_index.environments. | 211 |
| abstract_inverted_index.heterogeneous | 83, 162, 209 |
| abstract_inverted_index.proliferation | 1 |
| abstract_inverted_index.relationships | 119 |
| abstract_inverted_index.significantly | 186 |
| abstract_inverted_index.unprecedented | 16 |
| abstract_inverted_index.heterogeneous, | 26 |
| abstract_inverted_index.general-purpose | 55 |
| abstract_inverted_index.heuristic-based | 190 |
| abstract_inverted_index.infrastructures | 23, 85 |
| abstract_inverted_index.infrastructures. | 21 |
| abstract_inverted_index.dependencies—as | 105 |
| abstract_inverted_index.infrastructure—including | 95 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.81675379 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |