Holistic Transfer: Towards Non-Disruptive Fine-Tuning with Partial Target Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.01420
We propose a learning problem involving adapting a pre-trained source model to the target domain for classifying all classes that appeared in the source data, using target data that covers only a partial label space. This problem is practical, as it is unrealistic for the target end-users to collect data for all classes prior to adaptation. However, it has received limited attention in the literature. To shed light on this issue, we construct benchmark datasets and conduct extensive experiments to uncover the inherent challenges. We found a dilemma -- on the one hand, adapting to the new target domain is important to claim better performance; on the other hand, we observe that preserving the classification accuracy of classes missing in the target adaptation data is highly challenging, let alone improving them. To tackle this, we identify two key directions: 1) disentangling domain gradients from classification gradients, and 2) preserving class relationships. We present several effective solutions that maintain the accuracy of the missing classes and enhance the overall performance, establishing solid baselines for holistic transfer of pre-trained models with partial target data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.01420
- https://arxiv.org/pdf/2311.01420
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388327648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388327648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.01420Digital Object Identifier
- Title
-
Holistic Transfer: Towards Non-Disruptive Fine-Tuning with Partial Target DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-02Full publication date if available
- Authors
-
Cheng-Hao Tu, Hong-You Chen, Zheda Mai, Jike Zhong, Vardaan Pahuja, Tanya Berger‐Wolf, Song Gao, Charles V. Stewart, Yu Su, Wei‐Lun ChaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.01420Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.01420Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.01420Direct OA link when available
- Concepts
-
Computer science, Benchmark (surveying), Transfer of learning, Domain (mathematical analysis), Domain adaptation, Machine learning, Class (philosophy), Artificial intelligence, Adaptation (eye), Construct (python library), Key (lock), Labeled data, Missing data, Space (punctuation), Data mining, Mathematics, Programming language, Geography, Operating system, Computer security, Classifier (UML), Mathematical analysis, Physics, Optics, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388327648 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.01420 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.01420 |
| ids.openalex | https://openalex.org/W4388327648 |
| fwci | |
| type | preprint |
| title | Holistic Transfer: Towards Non-Disruptive Fine-Tuning with Partial Target Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7943126559257507 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7363783717155457 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C150899416 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6189095377922058 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[2].display_name | Transfer of learning |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6057873964309692 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C2776434776 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5660004615783691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[4].display_name | Domain adaptation |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5655527710914612 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C2777212361 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5614446997642517 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[6].display_name | Class (philosophy) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5459176898002625 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C139807058 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5446634888648987 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[8].display_name | Adaptation (eye) |
| concepts[9].id | https://openalex.org/C2780801425 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5384262800216675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[9].display_name | Construct (python library) |
| concepts[10].id | https://openalex.org/C26517878 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46966660022735596 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[10].display_name | Key (lock) |
| concepts[11].id | https://openalex.org/C2776145971 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45352277159690857 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[11].display_name | Labeled data |
| concepts[12].id | https://openalex.org/C9357733 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4339730441570282 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[12].display_name | Missing data |
| concepts[13].id | https://openalex.org/C2778572836 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4122644066810608 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[13].display_name | Space (punctuation) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.36784446239471436 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.06548646092414856 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C38652104 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[19].display_name | Computer security |
| concepts[20].id | https://openalex.org/C95623464 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[20].display_name | Classifier (UML) |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| concepts[23].id | https://openalex.org/C120665830 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[23].display_name | Optics |
| concepts[24].id | https://openalex.org/C13280743 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[24].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7943126559257507 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7363783717155457 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[2].score | 0.6189095377922058 |
| keywords[2].display_name | Transfer of learning |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.6057873964309692 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/domain-adaptation |
| keywords[4].score | 0.5660004615783691 |
| keywords[4].display_name | Domain adaptation |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5655527710914612 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/class |
| keywords[6].score | 0.5614446997642517 |
| keywords[6].display_name | Class (philosophy) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5459176898002625 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/adaptation |
| keywords[8].score | 0.5446634888648987 |
| keywords[8].display_name | Adaptation (eye) |
| keywords[9].id | https://openalex.org/keywords/construct |
| keywords[9].score | 0.5384262800216675 |
| keywords[9].display_name | Construct (python library) |
| keywords[10].id | https://openalex.org/keywords/key |
| keywords[10].score | 0.46966660022735596 |
| keywords[10].display_name | Key (lock) |
| keywords[11].id | https://openalex.org/keywords/labeled-data |
| keywords[11].score | 0.45352277159690857 |
| keywords[11].display_name | Labeled data |
| keywords[12].id | https://openalex.org/keywords/missing-data |
| keywords[12].score | 0.4339730441570282 |
| keywords[12].display_name | Missing data |
| keywords[13].id | https://openalex.org/keywords/space |
| keywords[13].score | 0.4122644066810608 |
| keywords[13].display_name | Space (punctuation) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.36784446239471436 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.06548646092414856 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.01420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.01420 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.01420 |
| locations[1].id | doi:10.48550/arxiv.2311.01420 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.01420 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077935756 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3168-7963 |
| authorships[0].author.display_name | Cheng-Hao Tu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tu, Cheng-Hao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012764388 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8127-5588 |
| authorships[1].author.display_name | Hong-You Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Hong-You |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066572795 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3703-563X |
| authorships[2].author.display_name | Zheda Mai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mai, Zheda |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088198600 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jike Zhong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhong, Jike |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102752724 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7538-8474 |
| authorships[4].author.display_name | Vardaan Pahuja |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pahuja, Vardaan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5060005215 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7610-1412 |
| authorships[5].author.display_name | Tanya Berger‐Wolf |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Berger-Wolf, Tanya |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5007542519 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7427-6681 |
| authorships[6].author.display_name | Song Gao |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Gao, Song |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5035964079 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6532-6675 |
| authorships[7].author.display_name | Charles V. Stewart |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Stewart, Charles |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101639173 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9350-8361 |
| authorships[8].author.display_name | Yu Su |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Su, Yu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101520942 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-1269-7231 |
| authorships[9].author.display_name | Wei‐Lun Chao |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Chao, Wei-Lun |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.01420 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-04T00:00:00 |
| display_name | Holistic Transfer: Towards Non-Disruptive Fine-Tuning with Partial Target Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3095487414, https://openalex.org/W2901026139, https://openalex.org/W3035557009, https://openalex.org/W3204418343, https://openalex.org/W2341113105, https://openalex.org/W2955172689, https://openalex.org/W3132602785, https://openalex.org/W3046182208, https://openalex.org/W2343346879, https://openalex.org/W2186589590 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.01420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.01420 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.01420 |
| primary_location.id | pmh:oai:arXiv.org:2311.01420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.01420 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.01420 |
| publication_date | 2023-11-02 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 7, 31, 86 |
| abstract_inverted_index.-- | 88 |
| abstract_inverted_index.1) | 139 |
| abstract_inverted_index.2) | 147 |
| abstract_inverted_index.To | 65, 131 |
| abstract_inverted_index.We | 0, 84, 151 |
| abstract_inverted_index.as | 39 |
| abstract_inverted_index.in | 21, 62, 119 |
| abstract_inverted_index.is | 37, 41, 99, 124 |
| abstract_inverted_index.it | 40, 57 |
| abstract_inverted_index.of | 116, 160, 175 |
| abstract_inverted_index.on | 68, 89, 105 |
| abstract_inverted_index.to | 11, 47, 54, 79, 94, 101 |
| abstract_inverted_index.we | 71, 109, 134 |
| abstract_inverted_index.all | 17, 51 |
| abstract_inverted_index.and | 75, 146, 164 |
| abstract_inverted_index.for | 15, 43, 50, 172 |
| abstract_inverted_index.has | 58 |
| abstract_inverted_index.key | 137 |
| abstract_inverted_index.let | 127 |
| abstract_inverted_index.new | 96 |
| abstract_inverted_index.one | 91 |
| abstract_inverted_index.the | 12, 22, 44, 63, 81, 90, 95, 106, 113, 120, 158, 161, 166 |
| abstract_inverted_index.two | 136 |
| abstract_inverted_index.This | 35 |
| abstract_inverted_index.data | 27, 49, 123 |
| abstract_inverted_index.from | 143 |
| abstract_inverted_index.only | 30 |
| abstract_inverted_index.shed | 66 |
| abstract_inverted_index.that | 19, 28, 111, 156 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.with | 178 |
| abstract_inverted_index.alone | 128 |
| abstract_inverted_index.claim | 102 |
| abstract_inverted_index.class | 149 |
| abstract_inverted_index.data, | 24 |
| abstract_inverted_index.data. | 181 |
| abstract_inverted_index.found | 85 |
| abstract_inverted_index.hand, | 92, 108 |
| abstract_inverted_index.label | 33 |
| abstract_inverted_index.light | 67 |
| abstract_inverted_index.model | 10 |
| abstract_inverted_index.other | 107 |
| abstract_inverted_index.prior | 53 |
| abstract_inverted_index.solid | 170 |
| abstract_inverted_index.them. | 130 |
| abstract_inverted_index.this, | 133 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.better | 103 |
| abstract_inverted_index.covers | 29 |
| abstract_inverted_index.domain | 14, 98, 141 |
| abstract_inverted_index.highly | 125 |
| abstract_inverted_index.issue, | 70 |
| abstract_inverted_index.models | 177 |
| abstract_inverted_index.source | 9, 23 |
| abstract_inverted_index.space. | 34 |
| abstract_inverted_index.tackle | 132 |
| abstract_inverted_index.target | 13, 26, 45, 97, 121, 180 |
| abstract_inverted_index.classes | 18, 52, 117, 163 |
| abstract_inverted_index.collect | 48 |
| abstract_inverted_index.conduct | 76 |
| abstract_inverted_index.dilemma | 87 |
| abstract_inverted_index.enhance | 165 |
| abstract_inverted_index.limited | 60 |
| abstract_inverted_index.missing | 118, 162 |
| abstract_inverted_index.observe | 110 |
| abstract_inverted_index.overall | 167 |
| abstract_inverted_index.partial | 32, 179 |
| abstract_inverted_index.present | 152 |
| abstract_inverted_index.problem | 4, 36 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.several | 153 |
| abstract_inverted_index.uncover | 80 |
| abstract_inverted_index.However, | 56 |
| abstract_inverted_index.accuracy | 115, 159 |
| abstract_inverted_index.adapting | 6, 93 |
| abstract_inverted_index.appeared | 20 |
| abstract_inverted_index.datasets | 74 |
| abstract_inverted_index.holistic | 173 |
| abstract_inverted_index.identify | 135 |
| abstract_inverted_index.inherent | 82 |
| abstract_inverted_index.learning | 3 |
| abstract_inverted_index.maintain | 157 |
| abstract_inverted_index.received | 59 |
| abstract_inverted_index.transfer | 174 |
| abstract_inverted_index.attention | 61 |
| abstract_inverted_index.baselines | 171 |
| abstract_inverted_index.benchmark | 73 |
| abstract_inverted_index.construct | 72 |
| abstract_inverted_index.effective | 154 |
| abstract_inverted_index.end-users | 46 |
| abstract_inverted_index.extensive | 77 |
| abstract_inverted_index.gradients | 142 |
| abstract_inverted_index.important | 100 |
| abstract_inverted_index.improving | 129 |
| abstract_inverted_index.involving | 5 |
| abstract_inverted_index.solutions | 155 |
| abstract_inverted_index.adaptation | 122 |
| abstract_inverted_index.gradients, | 145 |
| abstract_inverted_index.practical, | 38 |
| abstract_inverted_index.preserving | 112, 148 |
| abstract_inverted_index.adaptation. | 55 |
| abstract_inverted_index.challenges. | 83 |
| abstract_inverted_index.classifying | 16 |
| abstract_inverted_index.directions: | 138 |
| abstract_inverted_index.experiments | 78 |
| abstract_inverted_index.literature. | 64 |
| abstract_inverted_index.pre-trained | 8, 176 |
| abstract_inverted_index.unrealistic | 42 |
| abstract_inverted_index.challenging, | 126 |
| abstract_inverted_index.establishing | 169 |
| abstract_inverted_index.performance, | 168 |
| abstract_inverted_index.performance; | 104 |
| abstract_inverted_index.disentangling | 140 |
| abstract_inverted_index.classification | 114, 144 |
| abstract_inverted_index.relationships. | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |