Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.17516
This paper proposes a homogeneous second-order descent framework (HSODF) for nonconvex and convex optimization based on the generalized homogeneous model (GHM). In comparison to the Newton steps, the GHM can be solved by extremal symmetric eigenvalue procedures and thus grant an advantage in ill-conditioned problems. Moreover, GHM extends the ordinary homogeneous model (OHM) (Zhang et al. 2022) to allow adaptiveness in the construction of the aggregated matrix. Consequently, HSODF is able to recover some well-known second-order methods, such as trust-region methods and gradient regularized methods, while maintaining comparable iteration complexity bounds. We also study two specific realizations of HSODF. One is adaptive HSODM, which has a parameter-free $O(ε^{-3/2})$ global complexity bound for nonconvex second-order Lipschitz continuous objective functions. The other one is homotopy HSODM, which is proven to have a global linear rate of convergence without strong convexity. The efficiency of our approach to ill-conditioned and high-dimensional problems is justified by some preliminary numerical results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.17516
- https://arxiv.org/pdf/2306.17516
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383046864
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383046864Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.17516Digital Object Identifier
- Title
-
Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type MethodsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-30Full publication date if available
- Authors
-
Chang He, Yuntian Jiang, Chuwen Zhang, Dongdong Ge, Bo Jiang, Yinyu YeList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.17516Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.17516Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.17516Direct OA link when available
- Concepts
-
Mathematics, Mathematical optimization, Lipschitz continuity, Applied mathematics, Eigenvalues and eigenvectors, Convexity, Hessian matrix, Homotopy, Convergence (economics), Homogeneous, Rate of convergence, Matrix (chemical analysis), Upper and lower bounds, Computer science, Mathematical analysis, Combinatorics, Pure mathematics, Economics, Channel (broadcasting), Materials science, Physics, Economic growth, Financial economics, Computer network, Composite material, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383046864 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.17516 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.17516 |
| ids.openalex | https://openalex.org/W4383046864 |
| fwci | |
| type | preprint |
| title | Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10963 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2612 |
| topics[0].subfield.display_name | Numerical Analysis |
| topics[0].display_name | Advanced Optimization Algorithms Research |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9704999923706055 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6938899755477905 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6062567234039307 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C22324862 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5805115699768066 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q652707 |
| concepts[2].display_name | Lipschitz continuity |
| concepts[3].id | https://openalex.org/C28826006 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5769328474998474 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[3].display_name | Applied mathematics |
| concepts[4].id | https://openalex.org/C158693339 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5117825865745544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[4].display_name | Eigenvalues and eigenvectors |
| concepts[5].id | https://openalex.org/C72134830 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5041965246200562 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166524 |
| concepts[5].display_name | Convexity |
| concepts[6].id | https://openalex.org/C203616005 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4962654709815979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q620495 |
| concepts[6].display_name | Hessian matrix |
| concepts[7].id | https://openalex.org/C5961521 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49612364172935486 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q746083 |
| concepts[7].display_name | Homotopy |
| concepts[8].id | https://openalex.org/C2777303404 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47302699089050293 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[8].display_name | Convergence (economics) |
| concepts[9].id | https://openalex.org/C66882249 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4434097707271576 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[9].display_name | Homogeneous |
| concepts[10].id | https://openalex.org/C57869625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42716872692108154 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[10].display_name | Rate of convergence |
| concepts[11].id | https://openalex.org/C106487976 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4256003499031067 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[11].display_name | Matrix (chemical analysis) |
| concepts[12].id | https://openalex.org/C77553402 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4163650870323181 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q13222579 |
| concepts[12].display_name | Upper and lower bounds |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.25286537408828735 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2214924395084381 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.15013709664344788 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.11185267567634583 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C127162648 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[18].display_name | Channel (broadcasting) |
| concepts[19].id | https://openalex.org/C192562407 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[19].display_name | Materials science |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C50522688 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[21].display_name | Economic growth |
| concepts[22].id | https://openalex.org/C106159729 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q2294553 |
| concepts[22].display_name | Financial economics |
| concepts[23].id | https://openalex.org/C31258907 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[23].display_name | Computer network |
| concepts[24].id | https://openalex.org/C159985019 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[24].display_name | Composite material |
| concepts[25].id | https://openalex.org/C62520636 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[25].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.6938899755477905 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.6062567234039307 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/lipschitz-continuity |
| keywords[2].score | 0.5805115699768066 |
| keywords[2].display_name | Lipschitz continuity |
| keywords[3].id | https://openalex.org/keywords/applied-mathematics |
| keywords[3].score | 0.5769328474998474 |
| keywords[3].display_name | Applied mathematics |
| keywords[4].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[4].score | 0.5117825865745544 |
| keywords[4].display_name | Eigenvalues and eigenvectors |
| keywords[5].id | https://openalex.org/keywords/convexity |
| keywords[5].score | 0.5041965246200562 |
| keywords[5].display_name | Convexity |
| keywords[6].id | https://openalex.org/keywords/hessian-matrix |
| keywords[6].score | 0.4962654709815979 |
| keywords[6].display_name | Hessian matrix |
| keywords[7].id | https://openalex.org/keywords/homotopy |
| keywords[7].score | 0.49612364172935486 |
| keywords[7].display_name | Homotopy |
| keywords[8].id | https://openalex.org/keywords/convergence |
| keywords[8].score | 0.47302699089050293 |
| keywords[8].display_name | Convergence (economics) |
| keywords[9].id | https://openalex.org/keywords/homogeneous |
| keywords[9].score | 0.4434097707271576 |
| keywords[9].display_name | Homogeneous |
| keywords[10].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[10].score | 0.42716872692108154 |
| keywords[10].display_name | Rate of convergence |
| keywords[11].id | https://openalex.org/keywords/matrix |
| keywords[11].score | 0.4256003499031067 |
| keywords[11].display_name | Matrix (chemical analysis) |
| keywords[12].id | https://openalex.org/keywords/upper-and-lower-bounds |
| keywords[12].score | 0.4163650870323181 |
| keywords[12].display_name | Upper and lower bounds |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.25286537408828735 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.2214924395084381 |
| keywords[14].display_name | Mathematical analysis |
| keywords[15].id | https://openalex.org/keywords/combinatorics |
| keywords[15].score | 0.15013709664344788 |
| keywords[15].display_name | Combinatorics |
| keywords[16].id | https://openalex.org/keywords/pure-mathematics |
| keywords[16].score | 0.11185267567634583 |
| keywords[16].display_name | Pure mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.17516 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.17516 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.17516 |
| locations[1].id | doi:10.48550/arxiv.2306.17516 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.17516 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5019134530 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9024-9269 |
| authorships[0].author.display_name | Chang He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | He, Chang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043847224 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-9323-5519 |
| authorships[1].author.display_name | Yuntian Jiang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiang, Yuntian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053693890 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7135-8101 |
| authorships[2].author.display_name | Chuwen Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Chuwen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054490752 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Dongdong Ge |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ge, Dongdong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100669528 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6451-7565 |
| authorships[4].author.display_name | Bo Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jiang, Bo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041526408 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-3239-2622 |
| authorships[5].author.display_name | Yinyu Ye |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ye, Yinyu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.17516 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Homogeneous Second-Order Descent Framework: A Fast Alternative to Newton-Type Methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10963 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2612 |
| primary_topic.subfield.display_name | Numerical Analysis |
| primary_topic.display_name | Advanced Optimization Algorithms Research |
| related_works | https://openalex.org/W2611031068, https://openalex.org/W1704347466, https://openalex.org/W4283017538, https://openalex.org/W4243698225, https://openalex.org/W4221162014, https://openalex.org/W2169345436, https://openalex.org/W2053964895, https://openalex.org/W2952728270, https://openalex.org/W4309210394, https://openalex.org/W2130502925 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.17516 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.17516 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.17516 |
| primary_location.id | pmh:oai:arXiv.org:2306.17516 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.17516 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.17516 |
| publication_date | 2023-06-30 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 105, 129 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.an | 40 |
| abstract_inverted_index.as | 78 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.by | 32, 150 |
| abstract_inverted_index.et | 54 |
| abstract_inverted_index.in | 42, 60 |
| abstract_inverted_index.is | 69, 100, 121, 125, 148 |
| abstract_inverted_index.of | 63, 97, 133, 140 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 23, 57, 71, 127, 143 |
| abstract_inverted_index.GHM | 28, 46 |
| abstract_inverted_index.One | 99 |
| abstract_inverted_index.The | 118, 138 |
| abstract_inverted_index.al. | 55 |
| abstract_inverted_index.and | 11, 37, 81, 145 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 9, 111 |
| abstract_inverted_index.has | 104 |
| abstract_inverted_index.one | 120 |
| abstract_inverted_index.our | 141 |
| abstract_inverted_index.the | 16, 24, 27, 48, 61, 64 |
| abstract_inverted_index.two | 94 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.able | 70 |
| abstract_inverted_index.also | 92 |
| abstract_inverted_index.have | 128 |
| abstract_inverted_index.rate | 132 |
| abstract_inverted_index.some | 73, 151 |
| abstract_inverted_index.such | 77 |
| abstract_inverted_index.thus | 38 |
| abstract_inverted_index.(OHM) | 52 |
| abstract_inverted_index.2022) | 56 |
| abstract_inverted_index.HSODF | 68 |
| abstract_inverted_index.allow | 58 |
| abstract_inverted_index.based | 14 |
| abstract_inverted_index.bound | 110 |
| abstract_inverted_index.grant | 39 |
| abstract_inverted_index.model | 19, 51 |
| abstract_inverted_index.other | 119 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.study | 93 |
| abstract_inverted_index.which | 103, 124 |
| abstract_inverted_index.while | 85 |
| abstract_inverted_index.(GHM). | 20 |
| abstract_inverted_index.(Zhang | 53 |
| abstract_inverted_index.HSODF. | 98 |
| abstract_inverted_index.HSODM, | 102, 123 |
| abstract_inverted_index.Newton | 25 |
| abstract_inverted_index.convex | 12 |
| abstract_inverted_index.global | 108, 130 |
| abstract_inverted_index.linear | 131 |
| abstract_inverted_index.proven | 126 |
| abstract_inverted_index.solved | 31 |
| abstract_inverted_index.steps, | 26 |
| abstract_inverted_index.strong | 136 |
| abstract_inverted_index.(HSODF) | 8 |
| abstract_inverted_index.bounds. | 90 |
| abstract_inverted_index.descent | 6 |
| abstract_inverted_index.extends | 47 |
| abstract_inverted_index.matrix. | 66 |
| abstract_inverted_index.methods | 80 |
| abstract_inverted_index.recover | 72 |
| abstract_inverted_index.without | 135 |
| abstract_inverted_index.adaptive | 101 |
| abstract_inverted_index.approach | 142 |
| abstract_inverted_index.extremal | 33 |
| abstract_inverted_index.gradient | 82 |
| abstract_inverted_index.homotopy | 122 |
| abstract_inverted_index.methods, | 76, 84 |
| abstract_inverted_index.ordinary | 49 |
| abstract_inverted_index.problems | 147 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.results. | 154 |
| abstract_inverted_index.specific | 95 |
| abstract_inverted_index.Lipschitz | 114 |
| abstract_inverted_index.Moreover, | 45 |
| abstract_inverted_index.advantage | 41 |
| abstract_inverted_index.framework | 7 |
| abstract_inverted_index.iteration | 88 |
| abstract_inverted_index.justified | 149 |
| abstract_inverted_index.nonconvex | 10, 112 |
| abstract_inverted_index.numerical | 153 |
| abstract_inverted_index.objective | 116 |
| abstract_inverted_index.problems. | 44 |
| abstract_inverted_index.symmetric | 34 |
| abstract_inverted_index.aggregated | 65 |
| abstract_inverted_index.comparable | 87 |
| abstract_inverted_index.comparison | 22 |
| abstract_inverted_index.complexity | 89, 109 |
| abstract_inverted_index.continuous | 115 |
| abstract_inverted_index.convexity. | 137 |
| abstract_inverted_index.efficiency | 139 |
| abstract_inverted_index.eigenvalue | 35 |
| abstract_inverted_index.functions. | 117 |
| abstract_inverted_index.procedures | 36 |
| abstract_inverted_index.well-known | 74 |
| abstract_inverted_index.convergence | 134 |
| abstract_inverted_index.generalized | 17 |
| abstract_inverted_index.homogeneous | 4, 18, 50 |
| abstract_inverted_index.maintaining | 86 |
| abstract_inverted_index.preliminary | 152 |
| abstract_inverted_index.regularized | 83 |
| abstract_inverted_index.adaptiveness | 59 |
| abstract_inverted_index.construction | 62 |
| abstract_inverted_index.optimization | 13 |
| abstract_inverted_index.realizations | 96 |
| abstract_inverted_index.second-order | 5, 75, 113 |
| abstract_inverted_index.trust-region | 79 |
| abstract_inverted_index.Consequently, | 67 |
| abstract_inverted_index.$O(ε^{-3/2})$ | 107 |
| abstract_inverted_index.parameter-free | 106 |
| abstract_inverted_index.ill-conditioned | 43, 144 |
| abstract_inverted_index.high-dimensional | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |