Homotopical commutative rings and bispans Article Swipe
Bastiaan Cnossen
,
Rune Haugseng
,
Tobias Lenz
,
Sil Linskens
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.06911
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.06911
We prove that commutative semirings in a cartesian closed presentable $\infty$-category, as defined by Groth, Gepner, and Nikolaus, are equivalent to product-preserving functors from the $(2,1)$-category of bispans of finite sets. In other words, we identify the latter as the Lawvere theory for commutative semirings in the $\infty$-categorical context. This implies that connective commutative ring spectra can be described as grouplike product-preserving functors from bispans of finite sets to spaces. A key part of the proof is a localization result for $\infty$-categories of spans, and more generally for $\infty$-categories with factorization systems, that may be of independent interest.
Related Topics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.06911
- https://arxiv.org/pdf/2403.06911
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392737491
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392737491Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.06911Digital Object Identifier
- Title
-
Homotopical commutative rings and bispansWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-11Full publication date if available
- Authors
-
Bastiaan Cnossen, Rune Haugseng, Tobias Lenz, Sil LinskensList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.06911Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.06911Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.06911Direct OA link when available
- Concepts
-
Commutative ring, Commutative property, Mathematics, Pure mathematics, Algebra over a fieldTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392737491 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.06911 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.06911 |
| ids.openalex | https://openalex.org/W4392737491 |
| fwci | |
| type | preprint |
| title | Homotopical commutative rings and bispans |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11703 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Rings, Modules, and Algebras |
| topics[1].id | https://openalex.org/T11673 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Advanced Topics in Algebra |
| topics[2].id | https://openalex.org/T10287 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Algebraic structures and combinatorial models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161491579 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6178411841392517 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858656 |
| concepts[0].display_name | Commutative ring |
| concepts[1].id | https://openalex.org/C183778304 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5767533779144287 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q165474 |
| concepts[1].display_name | Commutative property |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4473065733909607 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C202444582 |
| concepts[3].level | 1 |
| concepts[3].score | 0.42943358421325684 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[3].display_name | Pure mathematics |
| concepts[4].id | https://openalex.org/C136119220 |
| concepts[4].level | 2 |
| concepts[4].score | 0.33604079484939575 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[4].display_name | Algebra over a field |
| keywords[0].id | https://openalex.org/keywords/commutative-ring |
| keywords[0].score | 0.6178411841392517 |
| keywords[0].display_name | Commutative ring |
| keywords[1].id | https://openalex.org/keywords/commutative-property |
| keywords[1].score | 0.5767533779144287 |
| keywords[1].display_name | Commutative property |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.4473065733909607 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/pure-mathematics |
| keywords[3].score | 0.42943358421325684 |
| keywords[3].display_name | Pure mathematics |
| keywords[4].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[4].score | 0.33604079484939575 |
| keywords[4].display_name | Algebra over a field |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.06911 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.06911 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.06911 |
| locations[1].id | doi:10.48550/arxiv.2403.06911 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.06911 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025862326 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bastiaan Cnossen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cnossen, Bastiaan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5034435942 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6468-362X |
| authorships[1].author.display_name | Rune Haugseng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haugseng, Rune |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019789404 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6031-5261 |
| authorships[2].author.display_name | Tobias Lenz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lenz, Tobias |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073632722 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2604-4875 |
| authorships[3].author.display_name | Sil Linskens |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Linskens, Sil |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.06911 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Homotopical commutative rings and bispans |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11703 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Rings, Modules, and Algebras |
| related_works | https://openalex.org/W1979597421, https://openalex.org/W4308298797, https://openalex.org/W4255963200, https://openalex.org/W2360590989, https://openalex.org/W2369074270, https://openalex.org/W2408222820, https://openalex.org/W4255391830, https://openalex.org/W2015466415, https://openalex.org/W2953844587, https://openalex.org/W1565509971 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.06911 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.06911 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.06911 |
| primary_location.id | pmh:oai:arXiv.org:2403.06911 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.06911 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.06911 |
| publication_date | 2024-03-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 70 |
| abstract_inverted_index.a | 6, 77 |
| abstract_inverted_index.In | 31 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 11, 38, 59 |
| abstract_inverted_index.be | 57, 94 |
| abstract_inverted_index.by | 13 |
| abstract_inverted_index.in | 5, 45 |
| abstract_inverted_index.is | 76 |
| abstract_inverted_index.of | 26, 28, 65, 73, 82, 95 |
| abstract_inverted_index.to | 20, 68 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.and | 16, 84 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.can | 56 |
| abstract_inverted_index.for | 42, 80, 87 |
| abstract_inverted_index.key | 71 |
| abstract_inverted_index.may | 93 |
| abstract_inverted_index.the | 24, 36, 39, 46, 74 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.from | 23, 63 |
| abstract_inverted_index.more | 85 |
| abstract_inverted_index.part | 72 |
| abstract_inverted_index.ring | 54 |
| abstract_inverted_index.sets | 67 |
| abstract_inverted_index.that | 2, 51, 92 |
| abstract_inverted_index.with | 89 |
| abstract_inverted_index.other | 32 |
| abstract_inverted_index.proof | 75 |
| abstract_inverted_index.prove | 1 |
| abstract_inverted_index.sets. | 30 |
| abstract_inverted_index.Groth, | 14 |
| abstract_inverted_index.closed | 8 |
| abstract_inverted_index.finite | 29, 66 |
| abstract_inverted_index.latter | 37 |
| abstract_inverted_index.result | 79 |
| abstract_inverted_index.spans, | 83 |
| abstract_inverted_index.theory | 41 |
| abstract_inverted_index.words, | 33 |
| abstract_inverted_index.Gepner, | 15 |
| abstract_inverted_index.Lawvere | 40 |
| abstract_inverted_index.bispans | 27, 64 |
| abstract_inverted_index.defined | 12 |
| abstract_inverted_index.implies | 50 |
| abstract_inverted_index.spaces. | 69 |
| abstract_inverted_index.spectra | 55 |
| abstract_inverted_index.context. | 48 |
| abstract_inverted_index.functors | 22, 62 |
| abstract_inverted_index.identify | 35 |
| abstract_inverted_index.systems, | 91 |
| abstract_inverted_index.Nikolaus, | 17 |
| abstract_inverted_index.cartesian | 7 |
| abstract_inverted_index.described | 58 |
| abstract_inverted_index.generally | 86 |
| abstract_inverted_index.grouplike | 60 |
| abstract_inverted_index.interest. | 97 |
| abstract_inverted_index.semirings | 4, 44 |
| abstract_inverted_index.connective | 52 |
| abstract_inverted_index.equivalent | 19 |
| abstract_inverted_index.commutative | 3, 43, 53 |
| abstract_inverted_index.independent | 96 |
| abstract_inverted_index.presentable | 9 |
| abstract_inverted_index.localization | 78 |
| abstract_inverted_index.factorization | 90 |
| abstract_inverted_index.$(2,1)$-category | 25 |
| abstract_inverted_index.$\infty$-category, | 10 |
| abstract_inverted_index.product-preserving | 21, 61 |
| abstract_inverted_index.$\infty$-categories | 81, 88 |
| abstract_inverted_index.$\infty$-categorical | 47 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |