Homotopical Foundations for Linear Algebra Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17689498
This paper explores the establishment of homotopical foundations for linear algebra, moving beyond the traditional set-theoretic and categorical approaches to incorporate concepts from homotopy theory. We propose a framework where vector spaces, linear transformations, and their fundamental properties are reinterpreted within a higher categorical context, emphasizing homotopy equivalences over strict isomorphisms. The study begins by reviewing the historical development of linear algebra and the emergence of homological algebra as a tool for studying algebraic structures with greater depth. We then introduce core concepts from category theory and homotopy theory, such as model categories, chain complexes, and derived categories, demonstrating their relevance in providing a more robust and flexible foundation. Our methodology involves defining homotopical analogues of classical linear algebraic constructions, such as tensor products, direct sums, and dual spaces, and investigating their properties up to homotopy. This perspective allows for a richer understanding of algebraic invariants and resolutions, providing insights into the stability and deformation properties of linear algebraic systems. The results section presents explicit examples of how theorems like the rank-nullity theorem or the structure theorem for finitely generated modules can be re-contextualized within a homotopical setting, leading to potentially new generalizations and computational approaches. The discussion highlights the implications of this framework for algebraic topology, algebraic geometry, and theoretical physics, where linear algebra plays a crucial role but often benefits from a more flexible, homotopy-invariant formulation. We conclude by outlining future research directions, particularly in developing a full-fledged model category structure for vector spaces and exploring applications in areas such as persistent homology and quantum information theory.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17689498
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106550376
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106550376Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17689498Digital Object Identifier
- Title
-
Homotopical Foundations for Linear AlgebraWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-23Full publication date if available
- Authors
-
SÉRGIO DE ANDRADE, PAULOList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17689498Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17689498Direct OA link when available
- Concepts
-
Mathematics, Algebra over a field, Homotopy, Homological algebra, Categorical variable, Linear algebra, Algebraic structure, Algebraic number, Homology (biology), Vector space, Tensor algebra, Pure mathematics, Category theory, Algebraic geometry, Dimension of an algebraic variety, Algebraic topology, Vector bundle, Dual (grammatical number), Universal algebra, Homotopy category, Algebraic cycle, Algebra representation, Perspective (graphical), Tensor product, Linear map, Commutative algebra, Relevance (law)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106550376 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17689498 |
| ids.openalex | https://openalex.org/W7106550376 |
| fwci | 0.0 |
| type | article |
| title | Homotopical Foundations for Linear Algebra |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10896 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.5135266780853271 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Homotopy and Cohomology in Algebraic Topology |
| topics[1].id | https://openalex.org/T11435 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.2099272757768631 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Polynomial and algebraic computation |
| topics[2].id | https://openalex.org/T12536 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.04932938516139984 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Topological and Geometric Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7072115540504456 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C136119220 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6813367605209351 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[1].display_name | Algebra over a field |
| concepts[2].id | https://openalex.org/C5961521 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6621607542037964 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q746083 |
| concepts[2].display_name | Homotopy |
| concepts[3].id | https://openalex.org/C18364862 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6198492646217346 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q579978 |
| concepts[3].display_name | Homological algebra |
| concepts[4].id | https://openalex.org/C5274069 |
| concepts[4].level | 2 |
| concepts[4].score | 0.530589759349823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[4].display_name | Categorical variable |
| concepts[5].id | https://openalex.org/C139352143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5289038419723511 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82571 |
| concepts[5].display_name | Linear algebra |
| concepts[6].id | https://openalex.org/C182419690 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4953550398349762 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205464 |
| concepts[6].display_name | Algebraic structure |
| concepts[7].id | https://openalex.org/C9376300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4585566818714142 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[7].display_name | Algebraic number |
| concepts[8].id | https://openalex.org/C165525559 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4501097798347473 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q224180 |
| concepts[8].display_name | Homology (biology) |
| concepts[9].id | https://openalex.org/C13336665 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4200035333633423 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q125977 |
| concepts[9].display_name | Vector space |
| concepts[10].id | https://openalex.org/C1680195 |
| concepts[10].level | 5 |
| concepts[10].score | 0.41224968433380127 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2296021 |
| concepts[10].display_name | Tensor algebra |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39759910106658936 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C54884031 |
| concepts[12].level | 2 |
| concepts[12].score | 0.37450265884399414 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q217413 |
| concepts[12].display_name | Category theory |
| concepts[13].id | https://openalex.org/C68363185 |
| concepts[13].level | 2 |
| concepts[13].score | 0.34703975915908813 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q180969 |
| concepts[13].display_name | Algebraic geometry |
| concepts[14].id | https://openalex.org/C25971838 |
| concepts[14].level | 3 |
| concepts[14].score | 0.3456721305847168 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5277261 |
| concepts[14].display_name | Dimension of an algebraic variety |
| concepts[15].id | https://openalex.org/C145054310 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3443554937839508 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q212803 |
| concepts[15].display_name | Algebraic topology |
| concepts[16].id | https://openalex.org/C95857938 |
| concepts[16].level | 2 |
| concepts[16].score | 0.33287742733955383 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q658429 |
| concepts[16].display_name | Vector bundle |
| concepts[17].id | https://openalex.org/C2780980858 |
| concepts[17].level | 2 |
| concepts[17].score | 0.30011340975761414 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[17].display_name | Dual (grammatical number) |
| concepts[18].id | https://openalex.org/C188971069 |
| concepts[18].level | 3 |
| concepts[18].score | 0.2989034056663513 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1636734 |
| concepts[18].display_name | Universal algebra |
| concepts[19].id | https://openalex.org/C79236096 |
| concepts[19].level | 3 |
| concepts[19].score | 0.28871312737464905 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14775269 |
| concepts[19].display_name | Homotopy category |
| concepts[20].id | https://openalex.org/C199793520 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2829602062702179 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4723996 |
| concepts[20].display_name | Algebraic cycle |
| concepts[21].id | https://openalex.org/C14394260 |
| concepts[21].level | 3 |
| concepts[21].score | 0.277606725692749 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q4723980 |
| concepts[21].display_name | Algebra representation |
| concepts[22].id | https://openalex.org/C12713177 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2702607810497284 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[22].display_name | Perspective (graphical) |
| concepts[23].id | https://openalex.org/C51255310 |
| concepts[23].level | 2 |
| concepts[23].score | 0.26517969369888306 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1163016 |
| concepts[23].display_name | Tensor product |
| concepts[24].id | https://openalex.org/C49766605 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2627565860748291 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q207643 |
| concepts[24].display_name | Linear map |
| concepts[25].id | https://openalex.org/C78313660 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2621517479419708 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q727659 |
| concepts[25].display_name | Commutative algebra |
| concepts[26].id | https://openalex.org/C158154518 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2548855245113373 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[26].display_name | Relevance (law) |
| keywords[0].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[0].score | 0.6813367605209351 |
| keywords[0].display_name | Algebra over a field |
| keywords[1].id | https://openalex.org/keywords/homotopy |
| keywords[1].score | 0.6621607542037964 |
| keywords[1].display_name | Homotopy |
| keywords[2].id | https://openalex.org/keywords/homological-algebra |
| keywords[2].score | 0.6198492646217346 |
| keywords[2].display_name | Homological algebra |
| keywords[3].id | https://openalex.org/keywords/categorical-variable |
| keywords[3].score | 0.530589759349823 |
| keywords[3].display_name | Categorical variable |
| keywords[4].id | https://openalex.org/keywords/linear-algebra |
| keywords[4].score | 0.5289038419723511 |
| keywords[4].display_name | Linear algebra |
| keywords[5].id | https://openalex.org/keywords/algebraic-structure |
| keywords[5].score | 0.4953550398349762 |
| keywords[5].display_name | Algebraic structure |
| keywords[6].id | https://openalex.org/keywords/algebraic-number |
| keywords[6].score | 0.4585566818714142 |
| keywords[6].display_name | Algebraic number |
| keywords[7].id | https://openalex.org/keywords/homology |
| keywords[7].score | 0.4501097798347473 |
| keywords[7].display_name | Homology (biology) |
| keywords[8].id | https://openalex.org/keywords/vector-space |
| keywords[8].score | 0.4200035333633423 |
| keywords[8].display_name | Vector space |
| language | |
| locations[0].id | pmh:oai:zenodo.org:17689498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17689498 |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | SÉRGIO DE ANDRADE, PAULO |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | SÉRGIO DE ANDRADE, PAULO |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17689498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-25T00:00:00 |
| display_name | Homotopical Foundations for Linear Algebra |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:47:58.456640 |
| primary_topic.id | https://openalex.org/T10896 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.5135266780853271 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Homotopy and Cohomology in Algebraic Topology |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:zenodo.org:17689498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17689498 |
| primary_location.id | pmh:oai:zenodo.org:17689498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17689498 |
| publication_date | 2025-11-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 41, 69, 103, 140, 185, 216, 223, 238 |
| abstract_inverted_index.We | 25, 78, 228 |
| abstract_inverted_index.as | 68, 90, 121, 252 |
| abstract_inverted_index.be | 182 |
| abstract_inverted_index.by | 54, 230 |
| abstract_inverted_index.in | 101, 236, 249 |
| abstract_inverted_index.of | 5, 59, 65, 115, 143, 156, 166, 201 |
| abstract_inverted_index.or | 173 |
| abstract_inverted_index.to | 19, 134, 189 |
| abstract_inverted_index.up | 133 |
| abstract_inverted_index.Our | 109 |
| abstract_inverted_index.The | 51, 160, 196 |
| abstract_inverted_index.and | 16, 34, 62, 86, 95, 106, 126, 129, 146, 153, 193, 209, 246, 255 |
| abstract_inverted_index.are | 38 |
| abstract_inverted_index.but | 219 |
| abstract_inverted_index.can | 181 |
| abstract_inverted_index.for | 8, 71, 139, 177, 204, 243 |
| abstract_inverted_index.how | 167 |
| abstract_inverted_index.new | 191 |
| abstract_inverted_index.the | 3, 13, 56, 63, 151, 170, 174, 199 |
| abstract_inverted_index.This | 0, 136 |
| abstract_inverted_index.core | 81 |
| abstract_inverted_index.dual | 127 |
| abstract_inverted_index.from | 22, 83, 222 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.like | 169 |
| abstract_inverted_index.more | 104, 224 |
| abstract_inverted_index.over | 48 |
| abstract_inverted_index.role | 218 |
| abstract_inverted_index.such | 89, 120, 251 |
| abstract_inverted_index.then | 79 |
| abstract_inverted_index.this | 202 |
| abstract_inverted_index.tool | 70 |
| abstract_inverted_index.with | 75 |
| abstract_inverted_index.areas | 250 |
| abstract_inverted_index.chain | 93 |
| abstract_inverted_index.model | 91, 240 |
| abstract_inverted_index.often | 220 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.plays | 215 |
| abstract_inverted_index.study | 52 |
| abstract_inverted_index.sums, | 125 |
| abstract_inverted_index.their | 35, 99, 131 |
| abstract_inverted_index.where | 29, 212 |
| abstract_inverted_index.allows | 138 |
| abstract_inverted_index.begins | 53 |
| abstract_inverted_index.beyond | 12 |
| abstract_inverted_index.depth. | 77 |
| abstract_inverted_index.direct | 124 |
| abstract_inverted_index.future | 232 |
| abstract_inverted_index.higher | 42 |
| abstract_inverted_index.linear | 9, 32, 60, 117, 157, 213 |
| abstract_inverted_index.moving | 11 |
| abstract_inverted_index.richer | 141 |
| abstract_inverted_index.robust | 105 |
| abstract_inverted_index.spaces | 245 |
| abstract_inverted_index.strict | 49 |
| abstract_inverted_index.tensor | 122 |
| abstract_inverted_index.theory | 85 |
| abstract_inverted_index.vector | 30, 244 |
| abstract_inverted_index.within | 40, 184 |
| abstract_inverted_index.algebra | 61, 67, 214 |
| abstract_inverted_index.crucial | 217 |
| abstract_inverted_index.derived | 96 |
| abstract_inverted_index.greater | 76 |
| abstract_inverted_index.leading | 188 |
| abstract_inverted_index.modules | 180 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.quantum | 256 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.section | 162 |
| abstract_inverted_index.spaces, | 31, 128 |
| abstract_inverted_index.theorem | 172, 176 |
| abstract_inverted_index.theory, | 88 |
| abstract_inverted_index.theory. | 24, 258 |
| abstract_inverted_index.algebra, | 10 |
| abstract_inverted_index.benefits | 221 |
| abstract_inverted_index.category | 84, 241 |
| abstract_inverted_index.concepts | 21, 82 |
| abstract_inverted_index.conclude | 229 |
| abstract_inverted_index.context, | 44 |
| abstract_inverted_index.defining | 112 |
| abstract_inverted_index.examples | 165 |
| abstract_inverted_index.explicit | 164 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.finitely | 178 |
| abstract_inverted_index.flexible | 107 |
| abstract_inverted_index.homology | 254 |
| abstract_inverted_index.homotopy | 23, 46, 87 |
| abstract_inverted_index.insights | 149 |
| abstract_inverted_index.involves | 111 |
| abstract_inverted_index.physics, | 211 |
| abstract_inverted_index.presents | 163 |
| abstract_inverted_index.research | 233 |
| abstract_inverted_index.setting, | 187 |
| abstract_inverted_index.studying | 72 |
| abstract_inverted_index.systems. | 159 |
| abstract_inverted_index.theorems | 168 |
| abstract_inverted_index.algebraic | 73, 118, 144, 158, 205, 207 |
| abstract_inverted_index.analogues | 114 |
| abstract_inverted_index.classical | 116 |
| abstract_inverted_index.emergence | 64 |
| abstract_inverted_index.exploring | 247 |
| abstract_inverted_index.flexible, | 225 |
| abstract_inverted_index.framework | 28, 203 |
| abstract_inverted_index.generated | 179 |
| abstract_inverted_index.geometry, | 208 |
| abstract_inverted_index.homotopy. | 135 |
| abstract_inverted_index.introduce | 80 |
| abstract_inverted_index.outlining | 231 |
| abstract_inverted_index.products, | 123 |
| abstract_inverted_index.providing | 102, 148 |
| abstract_inverted_index.relevance | 100 |
| abstract_inverted_index.reviewing | 55 |
| abstract_inverted_index.stability | 152 |
| abstract_inverted_index.structure | 175, 242 |
| abstract_inverted_index.topology, | 206 |
| abstract_inverted_index.approaches | 18 |
| abstract_inverted_index.complexes, | 94 |
| abstract_inverted_index.developing | 237 |
| abstract_inverted_index.discussion | 197 |
| abstract_inverted_index.highlights | 198 |
| abstract_inverted_index.historical | 57 |
| abstract_inverted_index.invariants | 145 |
| abstract_inverted_index.persistent | 253 |
| abstract_inverted_index.properties | 37, 132, 155 |
| abstract_inverted_index.structures | 74 |
| abstract_inverted_index.approaches. | 195 |
| abstract_inverted_index.categorical | 17, 43 |
| abstract_inverted_index.categories, | 92, 97 |
| abstract_inverted_index.deformation | 154 |
| abstract_inverted_index.development | 58 |
| abstract_inverted_index.directions, | 234 |
| abstract_inverted_index.emphasizing | 45 |
| abstract_inverted_index.foundation. | 108 |
| abstract_inverted_index.foundations | 7 |
| abstract_inverted_index.fundamental | 36 |
| abstract_inverted_index.homological | 66 |
| abstract_inverted_index.homotopical | 6, 113, 186 |
| abstract_inverted_index.incorporate | 20 |
| abstract_inverted_index.information | 257 |
| abstract_inverted_index.methodology | 110 |
| abstract_inverted_index.perspective | 137 |
| abstract_inverted_index.potentially | 190 |
| abstract_inverted_index.theoretical | 210 |
| abstract_inverted_index.traditional | 14 |
| abstract_inverted_index.applications | 248 |
| abstract_inverted_index.equivalences | 47 |
| abstract_inverted_index.formulation. | 227 |
| abstract_inverted_index.full-fledged | 239 |
| abstract_inverted_index.implications | 200 |
| abstract_inverted_index.particularly | 235 |
| abstract_inverted_index.rank-nullity | 171 |
| abstract_inverted_index.resolutions, | 147 |
| abstract_inverted_index.computational | 194 |
| abstract_inverted_index.demonstrating | 98 |
| abstract_inverted_index.establishment | 4 |
| abstract_inverted_index.investigating | 130 |
| abstract_inverted_index.isomorphisms. | 50 |
| abstract_inverted_index.reinterpreted | 39 |
| abstract_inverted_index.set-theoretic | 15 |
| abstract_inverted_index.understanding | 142 |
| abstract_inverted_index.constructions, | 119 |
| abstract_inverted_index.generalizations | 192 |
| abstract_inverted_index.transformations, | 33 |
| abstract_inverted_index.re-contextualized | 183 |
| abstract_inverted_index.homotopy-invariant | 226 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.86137841 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |