HopBox: An image analysis pipeline to characterize hop cone morphology Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/ppj2.20080
Hop cone morphology can influence picking and drying ability, and color can impact consumer preference and may be indicative of quality. However, these characteristics are not generally evaluated in hop breeding programs due to the tedious nature of trait quantification and the extensive variation among cones within a genotype. We developed the HopBox, which is a simply constructed light box with a camera mount, and a publicly available image processing pipeline that identifies hop cones within color‐corrected images, reads a QR code within the image, and outputs data on hop cone length, width, area, perimeter, openness, weight, color, and density. The trained model was applied to images of 500 cones each from 15 replicated advanced hop genotypes from the USDA‐ARS breeding program in Prosser, Washington. Analysis of variance revealed significant ( p < 0.001) differences between genotypes for all traits measured, enabling breeders to discriminate between genotypes for selection purposes. Broad sense heritability for all traits ranged from 0.23 to 0.59. A random sampling of hop cones from the complete dataset revealed that imaging only 5–10 cones adequately captured genotypic variation and provided acceptable rank correlations ( r s > 0.75); however, increasing the sample size to 30 provided optimal precision. Instructions for constructing a HopBox and the code for the analysis pipeline are publicly available online and have wide applicability for hop breeding and research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/ppj2.20080
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080
- OA Status
- gold
- Cited By
- 3
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386106661
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386106661Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/ppj2.20080Digital Object Identifier
- Title
-
HopBox: An image analysis pipeline to characterize hop cone morphologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-22Full publication date if available
- Authors
-
Kayla R. Altendorf, Garett C. Heineck, Collins Wakholi, Anna L. Tawril, Pranav Raja, Devin A. RippnerList of authors in order
- Landing page
-
https://doi.org/10.1002/ppj2.20080Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080Direct OA link when available
- Concepts
-
Heritability, Artificial intelligence, Trait, Computer vision, Hop (telecommunications), Statistics, Computer science, Biology, Mathematics, Genetics, Programming language, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386106661 |
|---|---|
| doi | https://doi.org/10.1002/ppj2.20080 |
| ids.doi | https://doi.org/10.1002/ppj2.20080 |
| ids.openalex | https://openalex.org/W4386106661 |
| fwci | 1.04326182 |
| type | article |
| title | HopBox: An image analysis pipeline to characterize hop cone morphology |
| biblio.issue | 1 |
| biblio.volume | 6 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13798 |
| topics[0].field.id | https://openalex.org/fields/30 |
| topics[0].field.display_name | Pharmacology, Toxicology and Pharmaceutics |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3004 |
| topics[0].subfield.display_name | Pharmacology |
| topics[0].display_name | Hops Chemistry and Applications |
| topics[1].id | https://openalex.org/T11796 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9799000024795532 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Horticultural and Viticultural Research |
| topics[2].id | https://openalex.org/T12161 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9797000288963318 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Surface Properties and Treatments |
| funders[0].id | https://openalex.org/F4320332382 |
| funders[0].ror | https://ror.org/0526p1y61 |
| funders[0].display_name | Oak Ridge Institute for Science and Education |
| is_xpac | False |
| apc_list.value | 1750 |
| apc_list.currency | USD |
| apc_list.value_usd | 1750 |
| apc_paid.value | 1750 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1750 |
| concepts[0].id | https://openalex.org/C161890455 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5149691700935364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1503548 |
| concepts[0].display_name | Heritability |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.47033461928367615 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C106934330 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4649547338485718 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1971873 |
| concepts[2].display_name | Trait |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4364967942237854 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C25906391 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43124687671661377 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1432381 |
| concepts[4].display_name | Hop (telecommunications) |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4044865369796753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3916628956794739 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.34326261281967163 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2800266742706299 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1230553686618805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/heritability |
| keywords[0].score | 0.5149691700935364 |
| keywords[0].display_name | Heritability |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.47033461928367615 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/trait |
| keywords[2].score | 0.4649547338485718 |
| keywords[2].display_name | Trait |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.4364967942237854 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/hop |
| keywords[4].score | 0.43124687671661377 |
| keywords[4].display_name | Hop (telecommunications) |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.4044865369796753 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3916628956794739 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.34326261281967163 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2800266742706299 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.1230553686618805 |
| keywords[9].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1002/ppj2.20080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210236857 |
| locations[0].source.issn | 2578-2703 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2578-2703 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Plant Phenome Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Plant Phenome Journal |
| locations[0].landing_page_url | https://doi.org/10.1002/ppj2.20080 |
| locations[1].id | pmh:oai:doaj.org/article:573a0dac27aa4886932be937ce2fdec6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Plant Phenome Journal, Vol 6, Iss 1, Pp n/a-n/a (2023) |
| locations[1].landing_page_url | https://doaj.org/article/573a0dac27aa4886932be937ce2fdec6 |
| locations[2].id | pmh:oai:osti.gov:1996439 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1996439 |
| locations[3].id | pmh:oai:osti.gov:2274840 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402487 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[3].source.host_organization | https://openalex.org/I139351228 |
| locations[3].source.host_organization_name | Office of Scientific and Technical Information |
| locations[3].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.osti.gov/biblio/2274840 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021582305 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4224-0171 |
| authorships[0].author.display_name | Kayla R. Altendorf |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131963 |
| authorships[0].affiliations[0].raw_affiliation_string | USDA-ARS Forage Seed and Cereal Research Unit Prosser Washington USA |
| authorships[0].institutions[0].id | https://openalex.org/I4210131963 |
| authorships[0].institutions[0].ror | https://ror.org/02ngnwv51 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210094889, https://openalex.org/I4210131963 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | National Forage Seed Production Research Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kayla R. Altendorf |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | USDA-ARS Forage Seed and Cereal Research Unit Prosser Washington USA |
| authorships[1].author.id | https://openalex.org/A5001441271 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0979-3671 |
| authorships[1].author.display_name | Garett C. Heineck |
| authorships[1].affiliations[0].raw_affiliation_string | USDA-ARS Northwest Sustainable Agroecosystems Research Unit Prosser Washington USA |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Garett C. Heineck |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | USDA-ARS Northwest Sustainable Agroecosystems Research Unit Prosser Washington USA |
| authorships[2].author.id | https://openalex.org/A5064164932 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0635-9463 |
| authorships[2].author.display_name | Collins Wakholi |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4389425366 |
| authorships[2].affiliations[0].raw_affiliation_string | Oak Ridge Institute for Science and Education Prosser Washington USA |
| authorships[2].institutions[0].id | https://openalex.org/I4389425366 |
| authorships[2].institutions[0].ror | https://ror.org/040vxhp34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1281378812, https://openalex.org/I1330989302, https://openalex.org/I4389425366 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Oak Ridge Institute for Science and Education |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Collins Wakholi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Oak Ridge Institute for Science and Education Prosser Washington USA |
| authorships[3].author.id | https://openalex.org/A5092682849 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Anna L. Tawril |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131963 |
| authorships[3].affiliations[0].raw_affiliation_string | USDA-ARS Forage Seed and Cereal Research Unit Prosser Washington USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210131963 |
| authorships[3].institutions[0].ror | https://ror.org/02ngnwv51 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210094889, https://openalex.org/I4210131963 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | National Forage Seed Production Research Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anna Tawril |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | USDA-ARS Forage Seed and Cereal Research Unit Prosser Washington USA |
| authorships[4].author.id | https://openalex.org/A5083488595 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Pranav Raja |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biological and Agricultural Engineering University of California Davis California USA |
| authorships[4].institutions[0].id | https://openalex.org/I84218800 |
| authorships[4].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Davis |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pranav Raja |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biological and Agricultural Engineering University of California Davis California USA |
| authorships[5].author.id | https://openalex.org/A5059953895 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0206-8477 |
| authorships[5].author.display_name | Devin A. Rippner |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210150399 |
| authorships[5].affiliations[0].raw_affiliation_string | USDA-ARS Horticultural Crops Production and Genetic Improvement Research Unit Prosser Washington USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210150399 |
| authorships[5].institutions[0].ror | https://ror.org/04avxj309 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210094889, https://openalex.org/I4210150399 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Horticultural Crops Research Laboratory |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Devin Rippner |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | USDA-ARS Horticultural Crops Production and Genetic Improvement Research Unit Prosser Washington USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | HopBox: An image analysis pipeline to characterize hop cone morphology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13798 |
| primary_topic.field.id | https://openalex.org/fields/30 |
| primary_topic.field.display_name | Pharmacology, Toxicology and Pharmaceutics |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3004 |
| primary_topic.subfield.display_name | Pharmacology |
| primary_topic.display_name | Hops Chemistry and Applications |
| related_works | https://openalex.org/W2281560785, https://openalex.org/W3152090159, https://openalex.org/W2258846206, https://openalex.org/W2110808585, https://openalex.org/W2591693479, https://openalex.org/W2810210875, https://openalex.org/W2329094632, https://openalex.org/W4387938620, https://openalex.org/W2059287122, https://openalex.org/W4282013488 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/ppj2.20080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210236857 |
| best_oa_location.source.issn | 2578-2703 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2578-2703 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Plant Phenome Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Plant Phenome Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1002/ppj2.20080 |
| primary_location.id | doi:10.1002/ppj2.20080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210236857 |
| primary_location.source.issn | 2578-2703 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2578-2703 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Plant Phenome Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ppj2.20080 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Plant Phenome Journal |
| primary_location.landing_page_url | https://doi.org/10.1002/ppj2.20080 |
| publication_date | 2023-08-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1951724000, https://openalex.org/W3157685993, https://openalex.org/W3088694108, https://openalex.org/W2099548770, https://openalex.org/W4285394974, https://openalex.org/W2752728932, https://openalex.org/W3158260149, https://openalex.org/W1996329493, https://openalex.org/W1971858235, https://openalex.org/W2194775991, https://openalex.org/W2968202344, https://openalex.org/W2950987008, https://openalex.org/W1998405819, https://openalex.org/W2049235209, https://openalex.org/W2774486220, https://openalex.org/W2898778330, https://openalex.org/W1903029394, https://openalex.org/W3024297428, https://openalex.org/W2748268306, https://openalex.org/W2110114082, https://openalex.org/W4295312788, https://openalex.org/W2101234009, https://openalex.org/W4295846597, https://openalex.org/W2051731381, https://openalex.org/W2035881673, https://openalex.org/W2099540110, https://openalex.org/W4308273202, https://openalex.org/W2069365205, https://openalex.org/W2002667252, https://openalex.org/W2015159529, https://openalex.org/W4254687493, https://openalex.org/W2089996359, https://openalex.org/W3132588452, https://openalex.org/W2295588875, https://openalex.org/W3089401293, https://openalex.org/W2116940336, https://openalex.org/W2127660078 |
| referenced_works_count | 37 |
| abstract_inverted_index.( | 131, 187 |
| abstract_inverted_index.A | 162 |
| abstract_inverted_index.a | 48, 56, 62, 66, 80, 205 |
| abstract_inverted_index.p | 132 |
| abstract_inverted_index.r | 188 |
| abstract_inverted_index.s | 189 |
| abstract_inverted_index.15 | 113 |
| abstract_inverted_index.30 | 198 |
| abstract_inverted_index.QR | 81 |
| abstract_inverted_index.We | 50 |
| abstract_inverted_index.be | 18 |
| abstract_inverted_index.in | 29, 123 |
| abstract_inverted_index.is | 55 |
| abstract_inverted_index.of | 20, 38, 108, 127, 165 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 34, 106, 144, 160, 197 |
| abstract_inverted_index.500 | 109 |
| abstract_inverted_index.Hop | 1 |
| abstract_inverted_index.The | 101 |
| abstract_inverted_index.all | 139, 155 |
| abstract_inverted_index.and | 7, 10, 16, 41, 65, 86, 99, 182, 207, 218, 225 |
| abstract_inverted_index.are | 25, 214 |
| abstract_inverted_index.box | 60 |
| abstract_inverted_index.can | 4, 12 |
| abstract_inverted_index.due | 33 |
| abstract_inverted_index.for | 138, 148, 154, 203, 210, 222 |
| abstract_inverted_index.hop | 30, 74, 90, 116, 166, 223 |
| abstract_inverted_index.may | 17 |
| abstract_inverted_index.not | 26 |
| abstract_inverted_index.the | 35, 42, 52, 84, 119, 169, 194, 208, 211 |
| abstract_inverted_index.was | 104 |
| abstract_inverted_index.> | 190 |
| abstract_inverted_index.< | 133 |
| abstract_inverted_index.0.23 | 159 |
| abstract_inverted_index.code | 82, 209 |
| abstract_inverted_index.cone | 2, 91 |
| abstract_inverted_index.data | 88 |
| abstract_inverted_index.each | 111 |
| abstract_inverted_index.from | 112, 118, 158, 168 |
| abstract_inverted_index.have | 219 |
| abstract_inverted_index.only | 175 |
| abstract_inverted_index.rank | 185 |
| abstract_inverted_index.size | 196 |
| abstract_inverted_index.that | 72, 173 |
| abstract_inverted_index.wide | 220 |
| abstract_inverted_index.with | 61 |
| abstract_inverted_index.0.59. | 161 |
| abstract_inverted_index.Broad | 151 |
| abstract_inverted_index.among | 45 |
| abstract_inverted_index.area, | 94 |
| abstract_inverted_index.color | 11 |
| abstract_inverted_index.cones | 46, 75, 110, 167, 177 |
| abstract_inverted_index.image | 69 |
| abstract_inverted_index.light | 59 |
| abstract_inverted_index.model | 103 |
| abstract_inverted_index.reads | 79 |
| abstract_inverted_index.sense | 152 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.trait | 39 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.0.001) | 134 |
| abstract_inverted_index.0.75); | 191 |
| abstract_inverted_index.5–10 | 176 |
| abstract_inverted_index.HopBox | 206 |
| abstract_inverted_index.camera | 63 |
| abstract_inverted_index.color, | 98 |
| abstract_inverted_index.drying | 8 |
| abstract_inverted_index.image, | 85 |
| abstract_inverted_index.images | 107 |
| abstract_inverted_index.impact | 13 |
| abstract_inverted_index.mount, | 64 |
| abstract_inverted_index.nature | 37 |
| abstract_inverted_index.online | 217 |
| abstract_inverted_index.random | 163 |
| abstract_inverted_index.ranged | 157 |
| abstract_inverted_index.sample | 195 |
| abstract_inverted_index.simply | 57 |
| abstract_inverted_index.traits | 140, 156 |
| abstract_inverted_index.width, | 93 |
| abstract_inverted_index.within | 47, 76, 83 |
| abstract_inverted_index.HopBox, | 53 |
| abstract_inverted_index.applied | 105 |
| abstract_inverted_index.between | 136, 146 |
| abstract_inverted_index.dataset | 171 |
| abstract_inverted_index.images, | 78 |
| abstract_inverted_index.imaging | 174 |
| abstract_inverted_index.length, | 92 |
| abstract_inverted_index.optimal | 200 |
| abstract_inverted_index.outputs | 87 |
| abstract_inverted_index.picking | 6 |
| abstract_inverted_index.program | 122 |
| abstract_inverted_index.tedious | 36 |
| abstract_inverted_index.trained | 102 |
| abstract_inverted_index.weight, | 97 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 126 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Prosser, | 124 |
| abstract_inverted_index.ability, | 9 |
| abstract_inverted_index.advanced | 115 |
| abstract_inverted_index.analysis | 212 |
| abstract_inverted_index.breeders | 143 |
| abstract_inverted_index.breeding | 31, 121, 224 |
| abstract_inverted_index.captured | 179 |
| abstract_inverted_index.complete | 170 |
| abstract_inverted_index.consumer | 14 |
| abstract_inverted_index.density. | 100 |
| abstract_inverted_index.enabling | 142 |
| abstract_inverted_index.however, | 192 |
| abstract_inverted_index.pipeline | 71, 213 |
| abstract_inverted_index.programs | 32 |
| abstract_inverted_index.provided | 183, 199 |
| abstract_inverted_index.publicly | 67, 215 |
| abstract_inverted_index.quality. | 21 |
| abstract_inverted_index.revealed | 129, 172 |
| abstract_inverted_index.sampling | 164 |
| abstract_inverted_index.variance | 128 |
| abstract_inverted_index.available | 68, 216 |
| abstract_inverted_index.developed | 51 |
| abstract_inverted_index.evaluated | 28 |
| abstract_inverted_index.extensive | 43 |
| abstract_inverted_index.generally | 27 |
| abstract_inverted_index.genotype. | 49 |
| abstract_inverted_index.genotypes | 117, 137, 147 |
| abstract_inverted_index.genotypic | 180 |
| abstract_inverted_index.influence | 5 |
| abstract_inverted_index.measured, | 141 |
| abstract_inverted_index.openness, | 96 |
| abstract_inverted_index.purposes. | 150 |
| abstract_inverted_index.research. | 226 |
| abstract_inverted_index.selection | 149 |
| abstract_inverted_index.variation | 44, 181 |
| abstract_inverted_index.USDA‐ARS | 120 |
| abstract_inverted_index.acceptable | 184 |
| abstract_inverted_index.adequately | 178 |
| abstract_inverted_index.identifies | 73 |
| abstract_inverted_index.increasing | 193 |
| abstract_inverted_index.indicative | 19 |
| abstract_inverted_index.morphology | 3 |
| abstract_inverted_index.perimeter, | 95 |
| abstract_inverted_index.precision. | 201 |
| abstract_inverted_index.preference | 15 |
| abstract_inverted_index.processing | 70 |
| abstract_inverted_index.replicated | 114 |
| abstract_inverted_index.Washington. | 125 |
| abstract_inverted_index.constructed | 58 |
| abstract_inverted_index.differences | 135 |
| abstract_inverted_index.significant | 130 |
| abstract_inverted_index.Instructions | 202 |
| abstract_inverted_index.constructing | 204 |
| abstract_inverted_index.correlations | 186 |
| abstract_inverted_index.discriminate | 145 |
| abstract_inverted_index.heritability | 153 |
| abstract_inverted_index.applicability | 221 |
| abstract_inverted_index.quantification | 40 |
| abstract_inverted_index.characteristics | 24 |
| abstract_inverted_index.color‐corrected | 77 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[1].score | 0.46000000834465027 |
| sustainable_development_goals[1].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.73376029 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |