Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.12028
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a plug-and-play pruning-and-recovering framework, called Hourglass Tokenizer (HoT), for efficient transformer-based 3D human pose estimation from videos. Our HoT begins with pruning pose tokens of redundant frames and ends with recovering full-length tokens, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. To effectively achieve this, we propose a token pruning cluster (TPC) that dynamically selects a few representative tokens with high semantic diversity while eliminating the redundancy of video frames. In addition, we develop a token recovering attention (TRA) to restore the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Extensive experiments on two benchmark datasets (i.e., Human3.6M and MPI-INF-3DHP) demonstrate that our method can achieve both high efficiency and estimation accuracy compared to the original VPT models. For instance, applying to MotionBERT and MixSTE on Human3.6M, our HoT can save nearly 50% FLOPs without sacrificing accuracy and nearly 40% FLOPs with only 0.2% accuracy drop, respectively. Code and models are available at https://github.com/NationalGAILab/HoT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.12028
- https://arxiv.org/pdf/2311.12028
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388926371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388926371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.12028Digital Object Identifier
- Title
-
Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose EstimationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-20Full publication date if available
- Authors
-
Wenhao Li, Mengyuan Liu, Hong Liu, Pichao Wang, Jialun Cai, Nicu SebeList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.12028Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.12028Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.12028Direct OA link when available
- Concepts
-
Computer science, Security token, FLOPS, Transformer, Inference, Pose, Artificial intelligence, Redundancy (engineering), Parallel computing, Computer network, Voltage, Operating system, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388926371 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.12028 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.12028 |
| ids.openalex | https://openalex.org/W4388926371 |
| fwci | |
| type | preprint |
| title | Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T11398 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9817000031471252 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1709 |
| topics[1].subfield.display_name | Human-Computer Interaction |
| topics[1].display_name | Hand Gesture Recognition Systems |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9812999963760376 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8162968754768372 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C48145219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7058929204940796 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[1].display_name | Security token |
| concepts[2].id | https://openalex.org/C3826847 |
| concepts[2].level | 2 |
| concepts[2].score | 0.645155668258667 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188768 |
| concepts[2].display_name | FLOPS |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6231641173362732 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6119906306266785 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C52102323 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5631768703460693 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1671968 |
| concepts[5].display_name | Pose |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4688113033771515 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C152124472 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4229414463043213 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[7].display_name | Redundancy (engineering) |
| concepts[8].id | https://openalex.org/C173608175 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15806818008422852 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[8].display_name | Parallel computing |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.08484584093093872 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8162968754768372 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/security-token |
| keywords[1].score | 0.7058929204940796 |
| keywords[1].display_name | Security token |
| keywords[2].id | https://openalex.org/keywords/flops |
| keywords[2].score | 0.645155668258667 |
| keywords[2].display_name | FLOPS |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6231641173362732 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.6119906306266785 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/pose |
| keywords[5].score | 0.5631768703460693 |
| keywords[5].display_name | Pose |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4688113033771515 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/redundancy |
| keywords[7].score | 0.4229414463043213 |
| keywords[7].display_name | Redundancy (engineering) |
| keywords[8].id | https://openalex.org/keywords/parallel-computing |
| keywords[8].score | 0.15806818008422852 |
| keywords[8].display_name | Parallel computing |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.08484584093093872 |
| keywords[9].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.12028 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.12028 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.12028 |
| locations[1].id | doi:10.48550/arxiv.2311.12028 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.12028 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100362614 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8048-2668 |
| authorships[0].author.display_name | Wenhao Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Wenhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100705472 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6332-8316 |
| authorships[1].author.display_name | Mengyuan Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Mengyuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055675902 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7720-275X |
| authorships[2].author.display_name | Hong Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Hong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5042680345 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1430-0237 |
| authorships[3].author.display_name | Pichao Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Pichao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026665213 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8349-2711 |
| authorships[4].author.display_name | Jialun Cai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cai, Jialun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5027171279 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6597-7248 |
| authorships[5].author.display_name | Nicu Sebe |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sebe, Nicu |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.12028 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W4315697128, https://openalex.org/W4382323155, https://openalex.org/W3205506801, https://openalex.org/W2971502891, https://openalex.org/W4287067436, https://openalex.org/W4388335561, https://openalex.org/W4280599700, https://openalex.org/W2970530566, https://openalex.org/W2967478618, https://openalex.org/W3016124757 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.12028 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.12028 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.12028 |
| primary_location.id | pmh:oai:arXiv.org:2311.12028 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.12028 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.12028 |
| publication_date | 2023-11-20 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 71, 92, 100, 119 |
| abstract_inverted_index.3D | 10, 47 |
| abstract_inverted_index.In | 31, 115 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.at | 211 |
| abstract_inverted_index.in | 5, 70, 75 |
| abstract_inverted_index.of | 8, 19, 60, 112 |
| abstract_inverted_index.on | 28, 131, 151, 184 |
| abstract_inverted_index.to | 124, 140, 172, 180 |
| abstract_inverted_index.we | 34, 90, 117 |
| abstract_inverted_index.40% | 198 |
| abstract_inverted_index.50% | 191 |
| abstract_inverted_index.For | 177 |
| abstract_inverted_index.HoT | 54, 187 |
| abstract_inverted_index.Our | 53 |
| abstract_inverted_index.VPT | 175 |
| abstract_inverted_index.and | 63, 80, 157, 168, 182, 196, 207 |
| abstract_inverted_index.are | 209 |
| abstract_inverted_index.can | 163, 188 |
| abstract_inverted_index.few | 72, 101 |
| abstract_inverted_index.for | 44, 146 |
| abstract_inverted_index.our | 161, 186 |
| abstract_inverted_index.the | 6, 15, 76, 83, 110, 126, 132, 137, 141, 173 |
| abstract_inverted_index.two | 152 |
| abstract_inverted_index.0.2% | 202 |
| abstract_inverted_index.Code | 206 |
| abstract_inverted_index.been | 2 |
| abstract_inverted_index.both | 165 |
| abstract_inverted_index.ends | 64 |
| abstract_inverted_index.fast | 147 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.have | 1 |
| abstract_inverted_index.high | 16, 105, 166 |
| abstract_inverted_index.make | 25 |
| abstract_inverted_index.only | 201 |
| abstract_inverted_index.pose | 12, 22, 49, 58, 73 |
| abstract_inverted_index.save | 189 |
| abstract_inverted_index.that | 97, 160 |
| abstract_inverted_index.them | 26 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.thus | 81 |
| abstract_inverted_index.with | 56, 65, 104, 200 |
| abstract_inverted_index.(TPC) | 96 |
| abstract_inverted_index.(TRA) | 123 |
| abstract_inverted_index.FLOPs | 192, 199 |
| abstract_inverted_index.based | 130 |
| abstract_inverted_index.costs | 18 |
| abstract_inverted_index.drop, | 204 |
| abstract_inverted_index.field | 7 |
| abstract_inverted_index.human | 11, 48 |
| abstract_inverted_index.model | 84 |
| abstract_inverted_index.these | 20 |
| abstract_inverted_index.this, | 89 |
| abstract_inverted_index.token | 93, 120 |
| abstract_inverted_index.video | 21, 113 |
| abstract_inverted_index.while | 108 |
| abstract_inverted_index.(HoT), | 43 |
| abstract_inverted_index.(VPTs) | 24 |
| abstract_inverted_index.(i.e., | 155 |
| abstract_inverted_index.MixSTE | 183 |
| abstract_inverted_index.begins | 55 |
| abstract_inverted_index.blocks | 79 |
| abstract_inverted_index.called | 40 |
| abstract_inverted_index.frames | 62 |
| abstract_inverted_index.method | 162 |
| abstract_inverted_index.models | 208 |
| abstract_inverted_index.nearly | 190, 197 |
| abstract_inverted_index.output | 139 |
| abstract_inverted_index.paper, | 33 |
| abstract_inverted_index.tokens | 59, 74, 103 |
| abstract_inverted_index.achieve | 88, 164 |
| abstract_inverted_index.applied | 4 |
| abstract_inverted_index.cluster | 95 |
| abstract_inverted_index.develop | 118 |
| abstract_inverted_index.frames. | 114 |
| abstract_inverted_index.models. | 176 |
| abstract_inverted_index.network | 138 |
| abstract_inverted_index.present | 35 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.pruning | 57, 94 |
| abstract_inverted_index.restore | 125 |
| abstract_inverted_index.selects | 99 |
| abstract_inverted_index.thereby | 135 |
| abstract_inverted_index.tokens, | 68, 134 |
| abstract_inverted_index.videos. | 52 |
| abstract_inverted_index.without | 193 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.accuracy | 170, 195, 203 |
| abstract_inverted_index.applying | 179 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.datasets | 154 |
| abstract_inverted_index.detailed | 127 |
| abstract_inverted_index.devices. | 30 |
| abstract_inverted_index.original | 142, 174 |
| abstract_inverted_index.selected | 133 |
| abstract_inverted_index.semantic | 106 |
| abstract_inverted_index.temporal | 144 |
| abstract_inverted_index.Extensive | 149 |
| abstract_inverted_index.Hourglass | 41 |
| abstract_inverted_index.Human3.6M | 156 |
| abstract_inverted_index.Tokenizer | 42 |
| abstract_inverted_index.addition, | 116 |
| abstract_inverted_index.attention | 122 |
| abstract_inverted_index.available | 210 |
| abstract_inverted_index.benchmark | 153 |
| abstract_inverted_index.diversity | 107 |
| abstract_inverted_index.efficient | 45 |
| abstract_inverted_index.expanding | 136 |
| abstract_inverted_index.improving | 82 |
| abstract_inverted_index.instance, | 178 |
| abstract_inverted_index.redundant | 61 |
| abstract_inverted_index.resulting | 69 |
| abstract_inverted_index.Human3.6M, | 185 |
| abstract_inverted_index.MotionBERT | 181 |
| abstract_inverted_index.efficiency | 167 |
| abstract_inverted_index.estimation | 50, 169 |
| abstract_inverted_index.framework, | 39 |
| abstract_inverted_index.inference. | 148 |
| abstract_inverted_index.recovering | 66, 121 |
| abstract_inverted_index.redundancy | 111 |
| abstract_inverted_index.resolution | 145 |
| abstract_inverted_index.demonstrate | 159 |
| abstract_inverted_index.dynamically | 98 |
| abstract_inverted_index.effectively | 87 |
| abstract_inverted_index.efficiency. | 85 |
| abstract_inverted_index.eliminating | 109 |
| abstract_inverted_index.estimation. | 13 |
| abstract_inverted_index.experiments | 150 |
| abstract_inverted_index.full-length | 67, 143 |
| abstract_inverted_index.impractical | 27 |
| abstract_inverted_index.information | 129 |
| abstract_inverted_index.sacrificing | 194 |
| abstract_inverted_index.transformer | 78 |
| abstract_inverted_index.video-based | 9 |
| abstract_inverted_index.Transformers | 0 |
| abstract_inverted_index.intermediate | 77 |
| abstract_inverted_index.successfully | 3 |
| abstract_inverted_index.transformers | 23 |
| abstract_inverted_index.MPI-INF-3DHP) | 158 |
| abstract_inverted_index.computational | 17 |
| abstract_inverted_index.plug-and-play | 37 |
| abstract_inverted_index.respectively. | 205 |
| abstract_inverted_index.representative | 102 |
| abstract_inverted_index.spatio-temporal | 128 |
| abstract_inverted_index.transformer-based | 46 |
| abstract_inverted_index.resource-constrained | 29 |
| abstract_inverted_index.pruning-and-recovering | 38 |
| abstract_inverted_index.https://github.com/NationalGAILab/HoT. | 212 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |