How and why alpha should depend on sample size: A Bayesian-frequentist compromise for significance testing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/3cbh7
The use of fixed alpha levels in statistical testing is prevalent in management research, but can lead to Lindley's paradox in highly powered studies. In this article, we propose a sample size-adjusted alpha level approach that combines the benefits of both frequentist and Bayesian statistics, enabling strict hypothesis testing with known error rates while also quantifying the evidence for a hypothesis. We present an R-package that can be used to set the sample size-adjusted alpha level for generalized linear models, including linear regression, logistic regression, and Poisson regression. This approach can help researchers stop relying on mindless defaults and avoid situations where they reject the null hypothesis when the evidence in the test actually favors the null hypothesis, improving the accuracy and robustness of statistical analysis in management research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/3cbh7
- https://psyarxiv.com/3cbh7/download
- OA Status
- gold
- Cited By
- 5
- References
- 96
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313648231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313648231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/3cbh7Digital Object Identifier
- Title
-
How and why alpha should depend on sample size: A Bayesian-frequentist compromise for significance testingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-05Full publication date if available
- Authors
-
Jesper Wulff, Luke TaylorList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/3cbh7Publisher landing page
- PDF URL
-
https://psyarxiv.com/3cbh7/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://psyarxiv.com/3cbh7/downloadDirect OA link when available
- Concepts
-
Frequentist inference, Null hypothesis, Statistical hypothesis testing, Econometrics, Bayesian probability, Statistics, Sample size determination, Robustness (evolution), Frequentist probability, Computer science, Mathematics, Bayesian inference, Chemistry, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
96Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313648231 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/3cbh7 |
| ids.doi | https://doi.org/10.31234/osf.io/3cbh7 |
| ids.openalex | https://openalex.org/W4313648231 |
| fwci | 3.19279601 |
| type | preprint |
| title | How and why alpha should depend on sample size: A Bayesian-frequentist compromise for significance testing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9502000212669373 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.935699999332428 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162376815 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9013339877128601 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[0].display_name | Frequentist inference |
| concepts[1].id | https://openalex.org/C191988596 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7525210380554199 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628374 |
| concepts[1].display_name | Null hypothesis |
| concepts[2].id | https://openalex.org/C87007009 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6605393886566162 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[2].display_name | Statistical hypothesis testing |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6532576084136963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6022489070892334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5567439198493958 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C129848803 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5543679594993591 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[6].display_name | Sample size determination |
| concepts[7].id | https://openalex.org/C63479239 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4430685341358185 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[7].display_name | Robustness (evolution) |
| concepts[8].id | https://openalex.org/C75455068 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41278257966041565 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1455566 |
| concepts[8].display_name | Frequentist probability |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.37927600741386414 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3780952990055084 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C160234255 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3365193009376526 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[11].display_name | Bayesian inference |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/frequentist-inference |
| keywords[0].score | 0.9013339877128601 |
| keywords[0].display_name | Frequentist inference |
| keywords[1].id | https://openalex.org/keywords/null-hypothesis |
| keywords[1].score | 0.7525210380554199 |
| keywords[1].display_name | Null hypothesis |
| keywords[2].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[2].score | 0.6605393886566162 |
| keywords[2].display_name | Statistical hypothesis testing |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.6532576084136963 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.6022489070892334 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.5567439198493958 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/sample-size-determination |
| keywords[6].score | 0.5543679594993591 |
| keywords[6].display_name | Sample size determination |
| keywords[7].id | https://openalex.org/keywords/robustness |
| keywords[7].score | 0.4430685341358185 |
| keywords[7].display_name | Robustness (evolution) |
| keywords[8].id | https://openalex.org/keywords/frequentist-probability |
| keywords[8].score | 0.41278257966041565 |
| keywords[8].display_name | Frequentist probability |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.37927600741386414 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3780952990055084 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/bayesian-inference |
| keywords[11].score | 0.3365193009376526 |
| keywords[11].display_name | Bayesian inference |
| language | en |
| locations[0].id | doi:10.31234/osf.io/3cbh7 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://psyarxiv.com/3cbh7/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/3cbh7 |
| locations[1].id | pmh:oai:pure.atira.dk:publications/3729c10a-4ee2-4b82-a15c-dc0eb4df508f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | workingPaper |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Wulff, J & Taylor, L N 2023 'How and why alpha should depend on sample size : A Bayesian-frequentist compromise for significance testing' PsyArXiv. https://doi.org/10.31234/osf.io/3cbh7 |
| locations[1].landing_page_url | https://pure.au.dk/portal/en/publications/3729c10a-4ee2-4b82-a15c-dc0eb4df508f |
| locations[2].id | pmh:oai:share.osf.io:0331d333-372e-44df-86fa-38eaefd874c5 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400047 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Arabixiv (OSF Preprints) |
| locations[2].source.host_organization | https://openalex.org/I2799848540 |
| locations[2].source.host_organization_name | Center for Open Science |
| locations[2].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Preprint |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://osf.io/3cbh7 |
| locations[3].id | pmh:oai:share.osf.io:E0147-536-B4D |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400047 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Arabixiv (OSF Preprints) |
| locations[3].source.host_organization | https://openalex.org/I2799848540 |
| locations[3].source.host_organization_name | Center for Open Science |
| locations[3].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | preprint |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://doi.org/10.31234/OSF.IO/3CBH7 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5017450391 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7976-0939 |
| authorships[0].author.display_name | Jesper Wulff |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Economics and Business Economics, Aarhus University |
| authorships[0].institutions[0].id | https://openalex.org/I204337017 |
| authorships[0].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Aarhus University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jesper N. Wulff |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Economics and Business Economics, Aarhus University |
| authorships[1].author.id | https://openalex.org/A5102446866 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luke Taylor |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204337017 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Economics and Business Economics, Aarhus University |
| authorships[1].institutions[0].id | https://openalex.org/I204337017 |
| authorships[1].institutions[0].ror | https://ror.org/01aj84f44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204337017 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | Aarhus University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Luke Taylor |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Economics and Business Economics, Aarhus University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://psyarxiv.com/3cbh7/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How and why alpha should depend on sample size: A Bayesian-frequentist compromise for significance testing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9502000212669373 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W26545392, https://openalex.org/W3209156192, https://openalex.org/W3169034662, https://openalex.org/W2794371104, https://openalex.org/W2290754432, https://openalex.org/W232830309, https://openalex.org/W2949552345, https://openalex.org/W4388459130, https://openalex.org/W88131178, https://openalex.org/W4285819661 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.31234/osf.io/3cbh7 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://psyarxiv.com/3cbh7/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/3cbh7 |
| primary_location.id | doi:10.31234/osf.io/3cbh7 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://psyarxiv.com/3cbh7/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/3cbh7 |
| publication_date | 2023-01-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3011502880, https://openalex.org/W2922171888, https://openalex.org/W2052443584, https://openalex.org/W2754549406, https://openalex.org/W2095745678, https://openalex.org/W1991445071, https://openalex.org/W2105713027, https://openalex.org/W2341745752, https://openalex.org/W2736848882, https://openalex.org/W3191733181, https://openalex.org/W2142499192, https://openalex.org/W6679226004, https://openalex.org/W4245186283, https://openalex.org/W1567519924, https://openalex.org/W2173716449, https://openalex.org/W4317802140, https://openalex.org/W2015968801, https://openalex.org/W2151134010, https://openalex.org/W3103377301, https://openalex.org/W2326816070, https://openalex.org/W2133315500, https://openalex.org/W4246732997, https://openalex.org/W3106213137, https://openalex.org/W2078864646, https://openalex.org/W2972415491, https://openalex.org/W6795354790, https://openalex.org/W2922705716, https://openalex.org/W4244303441, https://openalex.org/W1991882349, https://openalex.org/W2194368188, https://openalex.org/W2752064947, https://openalex.org/W4220936859, https://openalex.org/W2964125295, https://openalex.org/W2550239419, https://openalex.org/W2618605105, https://openalex.org/W1987762341, https://openalex.org/W2129748849, https://openalex.org/W2771818531, https://openalex.org/W6808682407, https://openalex.org/W2127186943, https://openalex.org/W2753988303, https://openalex.org/W2081434173, https://openalex.org/W2103697925, https://openalex.org/W4247846309, https://openalex.org/W6747895981, https://openalex.org/W2803536098, https://openalex.org/W6608676252, https://openalex.org/W2102742491, https://openalex.org/W3167366489, https://openalex.org/W2890916528, https://openalex.org/W4280598886, https://openalex.org/W2615383388, https://openalex.org/W2004265721, https://openalex.org/W2907835842, https://openalex.org/W269738357, https://openalex.org/W1963970722, https://openalex.org/W2068052824, https://openalex.org/W3217190037, https://openalex.org/W2993330478, https://openalex.org/W42051514, https://openalex.org/W3035128275, https://openalex.org/W2010529280, https://openalex.org/W1978662219, https://openalex.org/W4254399385, https://openalex.org/W2099665323, https://openalex.org/W313647156, https://openalex.org/W3121646928, https://openalex.org/W6681987720, https://openalex.org/W2252370418, https://openalex.org/W4309645457, https://openalex.org/W2928584373, https://openalex.org/W2622091505, https://openalex.org/W2989814206, https://openalex.org/W4254544528, https://openalex.org/W3083593400, https://openalex.org/W2411344156, https://openalex.org/W3146808125, https://openalex.org/W2153683002, https://openalex.org/W1989961897, https://openalex.org/W4285186928, https://openalex.org/W216263296, https://openalex.org/W2073157712, https://openalex.org/W2168175751, https://openalex.org/W4212788538, https://openalex.org/W3217692695, https://openalex.org/W2091826868, https://openalex.org/W3125601827, https://openalex.org/W4205176546, https://openalex.org/W2618667237, https://openalex.org/W4248681815, https://openalex.org/W2569799477, https://openalex.org/W2128585330, https://openalex.org/W2408017125, https://openalex.org/W4231135067, https://openalex.org/W4281613210, https://openalex.org/W3134291025 |
| referenced_works_count | 96 |
| abstract_inverted_index.a | 29, 59 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.an | 63 |
| abstract_inverted_index.be | 67 |
| abstract_inverted_index.in | 6, 11, 20, 110, 126 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 2, 39, 123 |
| abstract_inverted_index.on | 95 |
| abstract_inverted_index.to | 17, 69 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 42, 85, 98, 121 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.can | 15, 66, 90 |
| abstract_inverted_index.for | 58, 76 |
| abstract_inverted_index.set | 70 |
| abstract_inverted_index.the | 37, 56, 71, 104, 108, 111, 115, 119 |
| abstract_inverted_index.use | 1 |
| abstract_inverted_index.This | 88 |
| abstract_inverted_index.also | 54 |
| abstract_inverted_index.both | 40 |
| abstract_inverted_index.help | 91 |
| abstract_inverted_index.lead | 16 |
| abstract_inverted_index.null | 105, 116 |
| abstract_inverted_index.stop | 93 |
| abstract_inverted_index.test | 112 |
| abstract_inverted_index.that | 35, 65 |
| abstract_inverted_index.they | 102 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.used | 68 |
| abstract_inverted_index.when | 107 |
| abstract_inverted_index.with | 49 |
| abstract_inverted_index.alpha | 4, 32, 74 |
| abstract_inverted_index.avoid | 99 |
| abstract_inverted_index.error | 51 |
| abstract_inverted_index.fixed | 3 |
| abstract_inverted_index.known | 50 |
| abstract_inverted_index.level | 33, 75 |
| abstract_inverted_index.rates | 52 |
| abstract_inverted_index.where | 101 |
| abstract_inverted_index.while | 53 |
| abstract_inverted_index.favors | 114 |
| abstract_inverted_index.highly | 21 |
| abstract_inverted_index.levels | 5 |
| abstract_inverted_index.linear | 78, 81 |
| abstract_inverted_index.reject | 103 |
| abstract_inverted_index.sample | 30, 72 |
| abstract_inverted_index.strict | 46 |
| abstract_inverted_index.Poisson | 86 |
| abstract_inverted_index.models, | 79 |
| abstract_inverted_index.paradox | 19 |
| abstract_inverted_index.powered | 22 |
| abstract_inverted_index.present | 62 |
| abstract_inverted_index.propose | 28 |
| abstract_inverted_index.relying | 94 |
| abstract_inverted_index.testing | 8, 48 |
| abstract_inverted_index.Bayesian | 43 |
| abstract_inverted_index.accuracy | 120 |
| abstract_inverted_index.actually | 113 |
| abstract_inverted_index.analysis | 125 |
| abstract_inverted_index.approach | 34, 89 |
| abstract_inverted_index.article, | 26 |
| abstract_inverted_index.benefits | 38 |
| abstract_inverted_index.combines | 36 |
| abstract_inverted_index.defaults | 97 |
| abstract_inverted_index.enabling | 45 |
| abstract_inverted_index.evidence | 57, 109 |
| abstract_inverted_index.logistic | 83 |
| abstract_inverted_index.mindless | 96 |
| abstract_inverted_index.studies. | 23 |
| abstract_inverted_index.Lindley's | 18 |
| abstract_inverted_index.R-package | 64 |
| abstract_inverted_index.improving | 118 |
| abstract_inverted_index.including | 80 |
| abstract_inverted_index.prevalent | 10 |
| abstract_inverted_index.research, | 13 |
| abstract_inverted_index.research. | 128 |
| abstract_inverted_index.hypothesis | 47, 106 |
| abstract_inverted_index.management | 12, 127 |
| abstract_inverted_index.robustness | 122 |
| abstract_inverted_index.situations | 100 |
| abstract_inverted_index.frequentist | 41 |
| abstract_inverted_index.generalized | 77 |
| abstract_inverted_index.hypothesis, | 117 |
| abstract_inverted_index.hypothesis. | 60 |
| abstract_inverted_index.quantifying | 55 |
| abstract_inverted_index.regression, | 82, 84 |
| abstract_inverted_index.regression. | 87 |
| abstract_inverted_index.researchers | 92 |
| abstract_inverted_index.statistical | 7, 124 |
| abstract_inverted_index.statistics, | 44 |
| abstract_inverted_index.size-adjusted | 31, 73 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.86179355 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |