How can AI reduce fall injuries in the workplace? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.24507
Fall-caused injuries are common in all types of work environments, including offices. They are the main cause of absences longer than three days, especially for small and medium-sized businesses (SMEs). However, data, data amount, data heterogeneity, and stringent processing time constraints continue to pose challenges to real-time fall detection. This work proposes a new approach based on a recurrent neural network (RNN) for Fall Detection and a Kolmogorov-Arnold Network (KAN) to estimate the time of impact of the fall. The approach is tested on SisFall, a dataset consisting of 2706 Activities of Daily Living (ADLs) and 1798 falls recorded by three sensors. The results show that the proposed approach achieves an average TPR of 82.6% and TNR of 98.4% for fall sequences and 94.4% in ADL. Besides, the Root Mean Squared Error of the estimated time of impact is approximately 160ms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.24507
- https://arxiv.org/pdf/2505.24507
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414857712
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414857712Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.24507Digital Object Identifier
- Title
-
How can AI reduce fall injuries in the workplace?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Nicholas Cartocci, Antonios E. Gkikakis, Roberto F. Pitzalis, Fabio Pera, Maria Teresa Settino, Darwin G. Caldwell, Jesús OrtizList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.24507Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.24507Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.24507Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414857712 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.24507 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.24507 |
| ids.openalex | https://openalex.org/W4414857712 |
| fwci | |
| type | preprint |
| title | How can AI reduce fall injuries in the workplace? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10809 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.986299991607666 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3614 |
| topics[0].subfield.display_name | Radiological and Ultrasound Technology |
| topics[0].display_name | Occupational Health and Safety Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.24507 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.24507 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.24507 |
| locations[1].id | doi:10.48550/arxiv.2505.24507 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.24507 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5002373483 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4908-9769 |
| authorships[0].author.display_name | Nicholas Cartocci |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cartocci, Nicholas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088094084 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5339-0431 |
| authorships[1].author.display_name | Antonios E. Gkikakis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gkikakis, Antonios E. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083559753 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1464-6219 |
| authorships[2].author.display_name | Roberto F. Pitzalis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pitzalis, Roberto F. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046455612 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fabio Pera |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pera, Fabio |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5050488117 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Maria Teresa Settino |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Settino, Maria Teresa |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5044243940 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6233-9961 |
| authorships[5].author.display_name | Darwin G. Caldwell |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Caldwell, Darwin G. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5025925261 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9475-1945 |
| authorships[6].author.display_name | Jesús Ortiz |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ortiz, Jesús |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.24507 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How can AI reduce fall injuries in the workplace? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10809 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.986299991607666 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3614 |
| primary_topic.subfield.display_name | Radiological and Ultrasound Technology |
| primary_topic.display_name | Occupational Health and Safety Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.24507 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.24507 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.24507 |
| primary_location.id | pmh:oai:arXiv.org:2505.24507 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.24507 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.24507 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 57, 66, 85 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.in | 4, 124 |
| abstract_inverted_index.is | 81, 138 |
| abstract_inverted_index.of | 7, 17, 74, 76, 88, 91, 113, 117, 132, 136 |
| abstract_inverted_index.on | 56, 83 |
| abstract_inverted_index.to | 42, 45, 70 |
| abstract_inverted_index.TNR | 116 |
| abstract_inverted_index.TPR | 112 |
| abstract_inverted_index.The | 79, 102 |
| abstract_inverted_index.all | 5 |
| abstract_inverted_index.and | 26, 36, 65, 95, 115, 122 |
| abstract_inverted_index.are | 2, 13 |
| abstract_inverted_index.for | 24, 62, 119 |
| abstract_inverted_index.new | 53 |
| abstract_inverted_index.the | 14, 72, 77, 106, 127, 133 |
| abstract_inverted_index.1798 | 96 |
| abstract_inverted_index.2706 | 89 |
| abstract_inverted_index.ADL. | 125 |
| abstract_inverted_index.Fall | 63 |
| abstract_inverted_index.Mean | 129 |
| abstract_inverted_index.Root | 128 |
| abstract_inverted_index.They | 12 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.data | 32, 34 |
| abstract_inverted_index.fall | 47, 120 |
| abstract_inverted_index.main | 15 |
| abstract_inverted_index.pose | 43 |
| abstract_inverted_index.show | 104 |
| abstract_inverted_index.than | 20 |
| abstract_inverted_index.that | 105 |
| abstract_inverted_index.time | 39, 73, 135 |
| abstract_inverted_index.work | 8, 50 |
| abstract_inverted_index.(KAN) | 69 |
| abstract_inverted_index.(RNN) | 61 |
| abstract_inverted_index.82.6% | 114 |
| abstract_inverted_index.94.4% | 123 |
| abstract_inverted_index.98.4% | 118 |
| abstract_inverted_index.Daily | 92 |
| abstract_inverted_index.Error | 131 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.cause | 16 |
| abstract_inverted_index.data, | 31 |
| abstract_inverted_index.days, | 22 |
| abstract_inverted_index.fall. | 78 |
| abstract_inverted_index.falls | 97 |
| abstract_inverted_index.small | 25 |
| abstract_inverted_index.three | 21, 100 |
| abstract_inverted_index.types | 6 |
| abstract_inverted_index.(ADLs) | 94 |
| abstract_inverted_index.160ms. | 140 |
| abstract_inverted_index.Living | 93 |
| abstract_inverted_index.common | 3 |
| abstract_inverted_index.impact | 75, 137 |
| abstract_inverted_index.longer | 19 |
| abstract_inverted_index.neural | 59 |
| abstract_inverted_index.tested | 82 |
| abstract_inverted_index.(SMEs). | 29 |
| abstract_inverted_index.Network | 68 |
| abstract_inverted_index.Squared | 130 |
| abstract_inverted_index.amount, | 33 |
| abstract_inverted_index.average | 111 |
| abstract_inverted_index.dataset | 86 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.results | 103 |
| abstract_inverted_index.Besides, | 126 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.SisFall, | 84 |
| abstract_inverted_index.absences | 18 |
| abstract_inverted_index.achieves | 109 |
| abstract_inverted_index.approach | 54, 80, 108 |
| abstract_inverted_index.continue | 41 |
| abstract_inverted_index.estimate | 71 |
| abstract_inverted_index.injuries | 1 |
| abstract_inverted_index.offices. | 11 |
| abstract_inverted_index.proposed | 107 |
| abstract_inverted_index.proposes | 51 |
| abstract_inverted_index.recorded | 98 |
| abstract_inverted_index.sensors. | 101 |
| abstract_inverted_index.Detection | 64 |
| abstract_inverted_index.estimated | 134 |
| abstract_inverted_index.including | 10 |
| abstract_inverted_index.real-time | 46 |
| abstract_inverted_index.recurrent | 58 |
| abstract_inverted_index.sequences | 121 |
| abstract_inverted_index.stringent | 37 |
| abstract_inverted_index.Activities | 90 |
| abstract_inverted_index.businesses | 28 |
| abstract_inverted_index.challenges | 44 |
| abstract_inverted_index.consisting | 87 |
| abstract_inverted_index.detection. | 48 |
| abstract_inverted_index.especially | 23 |
| abstract_inverted_index.processing | 38 |
| abstract_inverted_index.Fall-caused | 0 |
| abstract_inverted_index.constraints | 40 |
| abstract_inverted_index.medium-sized | 27 |
| abstract_inverted_index.approximately | 139 |
| abstract_inverted_index.environments, | 9 |
| abstract_inverted_index.heterogeneity, | 35 |
| abstract_inverted_index.Kolmogorov-Arnold | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |