How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions? Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1002/acm2.13328
Purpose We performed quantitative analysis of differences in deformable image registration (DIR) and deformable dose accumulation (DDA) computed on CBCT datasets reconstructed using the standard (Feldkamp‐Davis‐Kress: FDK_CBCT) and a novel iterative (iterative_CBCT) CBCT reconstruction algorithms. Methods Both FDK_CBCT and iterative_CBCT images were reconstructed for 323 fractions of treatment for 10 prostate cancer patients. Planning CT images were deformably registered to each CBCT image data set. After daily dose distributions were computed, they were mapped to planning CT to obtain deformed doses. Dosimetric and image registration results based CBCT images reconstructed by two algorithms were compared at three levels: (A) voxel doses over entire dose calculation volume, (B) clinical constraint results on targets and sensitive structures, and (C) contours propagated to CBCT images using DIR results based on three algorithms (SmartAdapt, Velocity, and Elastix) were compared with manually delineated contours as ground truth. Results (A) Average daily dose differences and average normalized DDA differences between FDK_CBCT and iterative_CBCT were ≤1 cGy. Maximum daily point dose differences increased from 0.22 ± 0.06 Gy (before the deformable dose mapping operation) to 1.33 ± 0.38 Gy after the deformable dose mapping. Maximum differences of normalized DDA per fraction were up to 0.80 Gy (0.42 ± 0.19 Gy). (B) Differences in target minimum doses were up to 8.31 Gy (−0.62 ± 4.60 Gy) and differences in critical structure doses were 0.70 ± 1.49 Gy. (C) For mapped prostate contours based on iterative_CBCT (relative to standard FDK_CBCT), dice similarity coefficient increased by 0.10 ± 0.09 ( p < 0.0001), mass center distances decreased by 2.5 ± 3.0 mm ( p < 0.00005), and Hausdorff distances decreased by 3.3 ± 4.4 mm ( p < 0.00015). Conclusions The new iterative CBCT reconstruction algorithm leads to different mapped volumes of interest, deformed and cumulative doses than results based on conventional FDK_CBCT.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/acm2.13328
- OA Status
- gold
- Cited By
- 3
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3192934433
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3192934433Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/acm2.13328Digital Object Identifier
- Title
-
How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-10Full publication date if available
- Authors
-
Weihua Mao, Chang Liu, Stephen Gardner, Mohamed A. Elshaikh, I. Aref, Joon K. Lee, Deepak Pradhan, Farzan Siddiqui, Karen Snyder, Akila Kumarasiri, Bo Zhao, Joshua Kim, Haisen Li, Ning Wen, Benjamin Movsas, Indrin J. ChettyList of authors in order
- Landing page
-
https://doi.org/10.1002/acm2.13328Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/acm2.13328Direct OA link when available
- Concepts
-
Voxel, Nuclear medicine, Iterative reconstruction, Image registration, Iterative closest point, Cone beam computed tomography, Medicine, Algorithm, Computer science, Mathematics, Computed tomography, Artificial intelligence, Radiology, Image (mathematics), Point cloudTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3192934433 |
|---|---|
| doi | https://doi.org/10.1002/acm2.13328 |
| ids.doi | https://doi.org/10.1002/acm2.13328 |
| ids.mag | 3192934433 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34378308 |
| ids.openalex | https://openalex.org/W3192934433 |
| fwci | 0.5032304 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D054893 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cone-Beam Computed Tomography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011874 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Radiometry |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011880 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D054894 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Spiral Cone-Beam Computed Tomography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D054893 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Cone-Beam Computed Tomography |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D007091 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Image Processing, Computer-Assisted |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008297 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Male |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D011874 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Radiometry |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D011880 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D054894 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Spiral Cone-Beam Computed Tomography |
| type | article |
| title | How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions? |
| biblio.issue | 9 |
| biblio.volume | 22 |
| biblio.last_page | 48 |
| biblio.first_page | 37 |
| topics[0].id | https://openalex.org/T10358 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3108 |
| topics[0].subfield.display_name | Radiation |
| topics[0].display_name | Advanced Radiotherapy Techniques |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320309603 |
| funders[0].ror | https://ror.org/05yab6874 |
| funders[0].display_name | Varian Medical Systems |
| is_xpac | False |
| apc_list.value | 2850 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3575 |
| apc_paid.value | 2850 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3575 |
| concepts[0].id | https://openalex.org/C54170458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7051360607147217 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[0].display_name | Voxel |
| concepts[1].id | https://openalex.org/C2989005 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5900340676307678 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[1].display_name | Nuclear medicine |
| concepts[2].id | https://openalex.org/C141379421 |
| concepts[2].level | 2 |
| concepts[2].score | 0.502159595489502 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[2].display_name | Iterative reconstruction |
| concepts[3].id | https://openalex.org/C166704113 |
| concepts[3].level | 3 |
| concepts[3].score | 0.49262648820877075 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[3].display_name | Image registration |
| concepts[4].id | https://openalex.org/C195958017 |
| concepts[4].level | 3 |
| concepts[4].score | 0.44425490498542786 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1675268 |
| concepts[4].display_name | Iterative closest point |
| concepts[5].id | https://openalex.org/C2779813781 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4408728778362274 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1224951 |
| concepts[5].display_name | Cone beam computed tomography |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4309757947921753 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4131712019443512 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.39225637912750244 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.37986084818840027 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C544519230 |
| concepts[10].level | 2 |
| concepts[10].score | 0.37015002965927124 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q32566 |
| concepts[10].display_name | Computed tomography |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2831757068634033 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23256215453147888 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.19503188133239746 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C131979681 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[14].display_name | Point cloud |
| keywords[0].id | https://openalex.org/keywords/voxel |
| keywords[0].score | 0.7051360607147217 |
| keywords[0].display_name | Voxel |
| keywords[1].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[1].score | 0.5900340676307678 |
| keywords[1].display_name | Nuclear medicine |
| keywords[2].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[2].score | 0.502159595489502 |
| keywords[2].display_name | Iterative reconstruction |
| keywords[3].id | https://openalex.org/keywords/image-registration |
| keywords[3].score | 0.49262648820877075 |
| keywords[3].display_name | Image registration |
| keywords[4].id | https://openalex.org/keywords/iterative-closest-point |
| keywords[4].score | 0.44425490498542786 |
| keywords[4].display_name | Iterative closest point |
| keywords[5].id | https://openalex.org/keywords/cone-beam-computed-tomography |
| keywords[5].score | 0.4408728778362274 |
| keywords[5].display_name | Cone beam computed tomography |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.4309757947921753 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4131712019443512 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.39225637912750244 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.37986084818840027 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/computed-tomography |
| keywords[10].score | 0.37015002965927124 |
| keywords[10].display_name | Computed tomography |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2831757068634033 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.23256215453147888 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.19503188133239746 |
| keywords[13].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1002/acm2.13328 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S29972171 |
| locations[0].source.issn | 1526-9914 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1526-9914 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Applied Clinical Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Clinical Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/acm2.13328 |
| locations[1].id | pmid:34378308 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of applied clinical medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34378308 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8425863 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Appl Clin Med Phys |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8425863 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5011424635 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5985-4244 |
| authorships[0].author.display_name | Weihua Mao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[0].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[0].institutions[0].id | https://openalex.org/I154057602 |
| authorships[0].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Henry Ford Health System |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weihua Mao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[1].author.id | https://openalex.org/A5100606309 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9511-4283 |
| authorships[1].author.display_name | Chang Liu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[1].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[1].institutions[0].id | https://openalex.org/I154057602 |
| authorships[1].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Henry Ford Health System |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[2].author.id | https://openalex.org/A5080219046 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6656-902X |
| authorships[2].author.display_name | Stephen Gardner |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[2].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[2].institutions[0].id | https://openalex.org/I154057602 |
| authorships[2].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Henry Ford Health System |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stephen J. Gardner |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[3].author.id | https://openalex.org/A5042690121 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2582-8897 |
| authorships[3].author.display_name | Mohamed A. Elshaikh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[3].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[3].institutions[0].id | https://openalex.org/I154057602 |
| authorships[3].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Henry Ford Health System |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohamed Elshaikh |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[4].author.id | https://openalex.org/A5102886776 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0101-0561 |
| authorships[4].author.display_name | I. Aref |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[4].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[4].institutions[0].id | https://openalex.org/I154057602 |
| authorships[4].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Henry Ford Health System |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ibrahim Aref |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[5].author.id | https://openalex.org/A5046590952 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9074-9677 |
| authorships[5].author.display_name | Joon K. Lee |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[5].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[5].institutions[0].id | https://openalex.org/I154057602 |
| authorships[5].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Henry Ford Health System |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Joon K. Lee |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[6].author.id | https://openalex.org/A5103102832 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5693-0157 |
| authorships[6].author.display_name | Deepak Pradhan |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[6].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[6].institutions[0].id | https://openalex.org/I154057602 |
| authorships[6].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[6].institutions[0].type | nonprofit |
| authorships[6].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Henry Ford Health System |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Deepak Pradhan |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[7].author.id | https://openalex.org/A5032295905 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1547-835X |
| authorships[7].author.display_name | Farzan Siddiqui |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[7].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[7].institutions[0].id | https://openalex.org/I154057602 |
| authorships[7].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Henry Ford Health System |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Farzan Siddiqui |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[8].author.id | https://openalex.org/A5070906860 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9241-7430 |
| authorships[8].author.display_name | Karen Snyder |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[8].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[8].institutions[0].id | https://openalex.org/I154057602 |
| authorships[8].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[8].institutions[0].type | nonprofit |
| authorships[8].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Henry Ford Health System |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Karen Chin Snyder |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[9].author.id | https://openalex.org/A5010536792 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-5508-9610 |
| authorships[9].author.display_name | Akila Kumarasiri |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[9].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[9].institutions[0].id | https://openalex.org/I154057602 |
| authorships[9].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[9].institutions[0].type | nonprofit |
| authorships[9].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Henry Ford Health System |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Akila Kumarasiri |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[10].author.id | https://openalex.org/A5064839560 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2563-1039 |
| authorships[10].author.display_name | Bo Zhao |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[10].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[10].institutions[0].id | https://openalex.org/I154057602 |
| authorships[10].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[10].institutions[0].type | nonprofit |
| authorships[10].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Henry Ford Health System |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Bo Zhao |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[11].author.id | https://openalex.org/A5044269137 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-8371-2852 |
| authorships[11].author.display_name | Joshua Kim |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[11].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[11].institutions[0].id | https://openalex.org/I154057602 |
| authorships[11].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[11].institutions[0].type | nonprofit |
| authorships[11].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Henry Ford Health System |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Joshua Kim |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[12].author.id | https://openalex.org/A5013510512 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-4352-589X |
| authorships[12].author.display_name | Haisen Li |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[12].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[12].institutions[0].id | https://openalex.org/I154057602 |
| authorships[12].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[12].institutions[0].type | nonprofit |
| authorships[12].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Henry Ford Health System |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Haisen Li |
| authorships[12].is_corresponding | True |
| authorships[12].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[13].author.id | https://openalex.org/A5006860803 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-9776-8056 |
| authorships[13].author.display_name | Ning Wen |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[13].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[13].institutions[0].id | https://openalex.org/I154057602 |
| authorships[13].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[13].institutions[0].type | nonprofit |
| authorships[13].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Henry Ford Health System |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Ning Winston Wen |
| authorships[13].is_corresponding | True |
| authorships[13].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[14].author.id | https://openalex.org/A5004625690 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-2703-9776 |
| authorships[14].author.display_name | Benjamin Movsas |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[14].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[14].institutions[0].id | https://openalex.org/I154057602 |
| authorships[14].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[14].institutions[0].type | nonprofit |
| authorships[14].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Henry Ford Health System |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Benjamin Movsas |
| authorships[14].is_corresponding | True |
| authorships[14].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| authorships[15].author.id | https://openalex.org/A5075401316 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-7979-7053 |
| authorships[15].author.display_name | Indrin J. Chetty |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I154057602 |
| authorships[15].affiliations[0].raw_affiliation_string | Henry Ford Health System Detroit MI USA |
| authorships[15].institutions[0].id | https://openalex.org/I154057602 |
| authorships[15].institutions[0].ror | https://ror.org/02kwnkm68 |
| authorships[15].institutions[0].type | nonprofit |
| authorships[15].institutions[0].lineage | https://openalex.org/I154057602 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | Henry Ford Health System |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Indrin J. Chetty |
| authorships[15].is_corresponding | True |
| authorships[15].raw_affiliation_strings | Henry Ford Health System Detroit MI USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/acm2.13328 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | How does CBCT reconstruction algorithm impact on deformably mapped targets and accumulated dose distributions? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10358 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3108 |
| primary_topic.subfield.display_name | Radiation |
| primary_topic.display_name | Advanced Radiotherapy Techniques |
| related_works | https://openalex.org/W2014930179, https://openalex.org/W2059714569, https://openalex.org/W2941021916, https://openalex.org/W2028038232, https://openalex.org/W2011433080, https://openalex.org/W2097096977, https://openalex.org/W2754843172, https://openalex.org/W1188550481, https://openalex.org/W2473184801, https://openalex.org/W3167209032 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/acm2.13328 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S29972171 |
| best_oa_location.source.issn | 1526-9914 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1526-9914 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/acm2.13328 |
| primary_location.id | doi:10.1002/acm2.13328 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S29972171 |
| primary_location.source.issn | 1526-9914 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1526-9914 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Applied Clinical Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/acm2.13328 |
| publication_date | 2021-08-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W4211035194, https://openalex.org/W2115646671, https://openalex.org/W2050792510, https://openalex.org/W2010840352, https://openalex.org/W2066912220, https://openalex.org/W2168201175, https://openalex.org/W2125566020, https://openalex.org/W2617726402, https://openalex.org/W2104633732, https://openalex.org/W2789942519, https://openalex.org/W2592765116, https://openalex.org/W2970627089, https://openalex.org/W1977836277, https://openalex.org/W2790158587, https://openalex.org/W2793682772, https://openalex.org/W2897438756, https://openalex.org/W2910229403, https://openalex.org/W2133287637, https://openalex.org/W2766380203, https://openalex.org/W2104133157, https://openalex.org/W2148347694, https://openalex.org/W1987869189, https://openalex.org/W2028790322, https://openalex.org/W257400246 |
| referenced_works_count | 24 |
| abstract_inverted_index.( | 250, 263, 276 |
| abstract_inverted_index.a | 29 |
| abstract_inverted_index.p | 251, 264, 277 |
| abstract_inverted_index.10 | 50 |
| abstract_inverted_index.CT | 55, 77 |
| abstract_inverted_index.Gy | 171, 182, 199, 214 |
| abstract_inverted_index.We | 2 |
| abstract_inverted_index.as | 140 |
| abstract_inverted_index.at | 96 |
| abstract_inverted_index.by | 91, 246, 258, 271 |
| abstract_inverted_index.in | 8, 206, 221 |
| abstract_inverted_index.mm | 262, 275 |
| abstract_inverted_index.of | 6, 47, 190, 292 |
| abstract_inverted_index.on | 19, 111, 127, 236, 301 |
| abstract_inverted_index.to | 60, 75, 78, 120, 178, 197, 212, 239, 288 |
| abstract_inverted_index.up | 196, 211 |
| abstract_inverted_index.± | 169, 180, 201, 216, 227, 248, 260, 273 |
| abstract_inverted_index.(A) | 99, 144 |
| abstract_inverted_index.(B) | 107, 204 |
| abstract_inverted_index.(C) | 117, 230 |
| abstract_inverted_index.2.5 | 259 |
| abstract_inverted_index.3.0 | 261 |
| abstract_inverted_index.3.3 | 272 |
| abstract_inverted_index.323 | 45 |
| abstract_inverted_index.4.4 | 274 |
| abstract_inverted_index.DDA | 152, 192 |
| abstract_inverted_index.DIR | 124 |
| abstract_inverted_index.For | 231 |
| abstract_inverted_index.Gy) | 218 |
| abstract_inverted_index.Gy. | 229 |
| abstract_inverted_index.The | 281 |
| abstract_inverted_index.and | 13, 28, 39, 83, 113, 116, 132, 149, 156, 219, 267, 295 |
| abstract_inverted_index.for | 44, 49 |
| abstract_inverted_index.new | 282 |
| abstract_inverted_index.per | 193 |
| abstract_inverted_index.the | 24, 173, 184 |
| abstract_inverted_index.two | 92 |
| abstract_inverted_index.< | 252, 265, 278 |
| abstract_inverted_index.0.06 | 170 |
| abstract_inverted_index.0.09 | 249 |
| abstract_inverted_index.0.10 | 247 |
| abstract_inverted_index.0.19 | 202 |
| abstract_inverted_index.0.22 | 168 |
| abstract_inverted_index.0.38 | 181 |
| abstract_inverted_index.0.70 | 226 |
| abstract_inverted_index.0.80 | 198 |
| abstract_inverted_index.1.33 | 179 |
| abstract_inverted_index.1.49 | 228 |
| abstract_inverted_index.4.60 | 217 |
| abstract_inverted_index.8.31 | 213 |
| abstract_inverted_index.Both | 37 |
| abstract_inverted_index.CBCT | 20, 33, 62, 88, 121, 284 |
| abstract_inverted_index.Gy). | 203 |
| abstract_inverted_index.cGy. | 160 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.dice | 242 |
| abstract_inverted_index.dose | 15, 68, 104, 147, 164, 175, 186 |
| abstract_inverted_index.each | 61 |
| abstract_inverted_index.from | 167 |
| abstract_inverted_index.mass | 254 |
| abstract_inverted_index.over | 102 |
| abstract_inverted_index.set. | 65 |
| abstract_inverted_index.than | 298 |
| abstract_inverted_index.they | 72 |
| abstract_inverted_index.were | 42, 57, 70, 73, 94, 134, 158, 195, 210, 225 |
| abstract_inverted_index.with | 136 |
| abstract_inverted_index.≤1 | 159 |
| abstract_inverted_index.(0.42 | 200 |
| abstract_inverted_index.(DDA) | 17 |
| abstract_inverted_index.(DIR) | 12 |
| abstract_inverted_index.After | 66 |
| abstract_inverted_index.after | 183 |
| abstract_inverted_index.based | 87, 126, 235, 300 |
| abstract_inverted_index.daily | 67, 146, 162 |
| abstract_inverted_index.doses | 101, 209, 224, 297 |
| abstract_inverted_index.image | 10, 63, 84 |
| abstract_inverted_index.leads | 287 |
| abstract_inverted_index.novel | 30 |
| abstract_inverted_index.point | 163 |
| abstract_inverted_index.three | 97, 128 |
| abstract_inverted_index.using | 23, 123 |
| abstract_inverted_index.voxel | 100 |
| abstract_inverted_index.cancer | 52 |
| abstract_inverted_index.center | 255 |
| abstract_inverted_index.doses. | 81 |
| abstract_inverted_index.entire | 103 |
| abstract_inverted_index.ground | 141 |
| abstract_inverted_index.images | 41, 56, 89, 122 |
| abstract_inverted_index.mapped | 74, 232, 290 |
| abstract_inverted_index.obtain | 79 |
| abstract_inverted_index.target | 207 |
| abstract_inverted_index.truth. | 142 |
| abstract_inverted_index.(before | 172 |
| abstract_inverted_index.Average | 145 |
| abstract_inverted_index.Maximum | 161, 188 |
| abstract_inverted_index.Methods | 36 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 143 |
| abstract_inverted_index.average | 150 |
| abstract_inverted_index.between | 154 |
| abstract_inverted_index.levels: | 98 |
| abstract_inverted_index.mapping | 176 |
| abstract_inverted_index.minimum | 208 |
| abstract_inverted_index.results | 86, 110, 125, 299 |
| abstract_inverted_index.targets | 112 |
| abstract_inverted_index.volume, | 106 |
| abstract_inverted_index.volumes | 291 |
| abstract_inverted_index.(−0.62 | 215 |
| abstract_inverted_index.0.0001), | 253 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Elastix) | 133 |
| abstract_inverted_index.FDK_CBCT | 38, 155 |
| abstract_inverted_index.Planning | 54 |
| abstract_inverted_index.analysis | 5 |
| abstract_inverted_index.clinical | 108 |
| abstract_inverted_index.compared | 95, 135 |
| abstract_inverted_index.computed | 18 |
| abstract_inverted_index.contours | 118, 139, 234 |
| abstract_inverted_index.critical | 222 |
| abstract_inverted_index.datasets | 21 |
| abstract_inverted_index.deformed | 80, 294 |
| abstract_inverted_index.fraction | 194 |
| abstract_inverted_index.manually | 137 |
| abstract_inverted_index.mapping. | 187 |
| abstract_inverted_index.planning | 76 |
| abstract_inverted_index.prostate | 51, 233 |
| abstract_inverted_index.standard | 25, 240 |
| abstract_inverted_index.(relative | 238 |
| abstract_inverted_index.0.00005), | 266 |
| abstract_inverted_index.0.00015). | 279 |
| abstract_inverted_index.FDK_CBCT) | 27 |
| abstract_inverted_index.FDK_CBCT. | 303 |
| abstract_inverted_index.Hausdorff | 268 |
| abstract_inverted_index.Velocity, | 131 |
| abstract_inverted_index.algorithm | 286 |
| abstract_inverted_index.computed, | 71 |
| abstract_inverted_index.decreased | 257, 270 |
| abstract_inverted_index.different | 289 |
| abstract_inverted_index.distances | 256, 269 |
| abstract_inverted_index.fractions | 46 |
| abstract_inverted_index.increased | 166, 245 |
| abstract_inverted_index.interest, | 293 |
| abstract_inverted_index.iterative | 31, 283 |
| abstract_inverted_index.patients. | 53 |
| abstract_inverted_index.performed | 3 |
| abstract_inverted_index.sensitive | 114 |
| abstract_inverted_index.structure | 223 |
| abstract_inverted_index.treatment | 48 |
| abstract_inverted_index.Dosimetric | 82 |
| abstract_inverted_index.FDK_CBCT), | 241 |
| abstract_inverted_index.algorithms | 93, 129 |
| abstract_inverted_index.constraint | 109 |
| abstract_inverted_index.cumulative | 296 |
| abstract_inverted_index.deformable | 9, 14, 174, 185 |
| abstract_inverted_index.deformably | 58 |
| abstract_inverted_index.delineated | 138 |
| abstract_inverted_index.normalized | 151, 191 |
| abstract_inverted_index.operation) | 177 |
| abstract_inverted_index.propagated | 119 |
| abstract_inverted_index.registered | 59 |
| abstract_inverted_index.similarity | 243 |
| abstract_inverted_index.Conclusions | 280 |
| abstract_inverted_index.Differences | 205 |
| abstract_inverted_index.algorithms. | 35 |
| abstract_inverted_index.calculation | 105 |
| abstract_inverted_index.coefficient | 244 |
| abstract_inverted_index.differences | 7, 148, 153, 165, 189, 220 |
| abstract_inverted_index.structures, | 115 |
| abstract_inverted_index.(SmartAdapt, | 130 |
| abstract_inverted_index.accumulation | 16 |
| abstract_inverted_index.conventional | 302 |
| abstract_inverted_index.quantitative | 4 |
| abstract_inverted_index.registration | 11, 85 |
| abstract_inverted_index.distributions | 69 |
| abstract_inverted_index.reconstructed | 22, 43, 90 |
| abstract_inverted_index.iterative_CBCT | 40, 157, 237 |
| abstract_inverted_index.reconstruction | 34, 285 |
| abstract_inverted_index.(iterative_CBCT) | 32 |
| abstract_inverted_index.(Feldkamp‐Davis‐Kress: | 26 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5064839560, https://openalex.org/A5080219046, https://openalex.org/A5075401316, https://openalex.org/A5100606309, https://openalex.org/A5042690121, https://openalex.org/A5103102832, https://openalex.org/A5070906860, https://openalex.org/A5006860803, https://openalex.org/A5010536792, https://openalex.org/A5013510512, https://openalex.org/A5011424635, https://openalex.org/A5004625690, https://openalex.org/A5032295905, https://openalex.org/A5102886776, https://openalex.org/A5044269137, https://openalex.org/A5046590952 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 16 |
| corresponding_institution_ids | https://openalex.org/I154057602 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.68278252 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |